f; AN4989
” ife.augmented Application note

STM32 microcontroller debug toolbox

Introduction

STM32 end-users are sometimes confronted with non- or partially-functional systems during
product development. The best approach to use for the debug process is not always
obvious, particularly for inexperienced users.

To address the above concerns, this application note provides a toolbox describing the most
common debug techniques and their application to popular recommended IDEs for STM32
32-bit ARM® Cortex® MCUs. It contains detailed information for getting started as well as
hints and tips to make the best use of STM32 Software Development Tools in STM32
ecosystem.

This application note applies to the microcontrollers listed in Table 1.

Table 1. Applicable products

Type Sub class

STM32 High Performance MCUs
Microcontrollers STM32 Mainstream MCUs
STM32 Ultra Low Power MCUs

June 2017 DoclD030181 Rev 2 1/99

www.st.com

http://www.st.com

Contents AN4989

Contents
1 Forewordttt 8
1.1 Software versions 8
1.2 ACTONYMS . . . e e 8
2 STM32 ecosystemoutlines, 9
2.1 Hardware developmenttools 9
211 Hardware Kits 9
21.2 ST-LINK probe e 13
213 Alternative debuggerprobes 15
2.2 Software developmenttools 15
2.21 STM32CUbeMX 16
222 Partner IDEs 17
223 STMSHUIO .. . oot 19
224 ST-LINK utility 19
2.3 Embedded software 20
24 Informationand sharing 21
241 Documentation e 21
242 ST CommuNItyt 22
243 STM32 Education i 22
3 Compilingfordebug 23
3.1 Optimization 23
3.1.1 IAR™ EWARM . .. 23
3.1.2 Keil® MDK-ARM pVision ... 24
3.1.3 SWASTMBZ .. 25
3.2 Debugging information 25
3.21 IAR™ EWARM . .. 26
3.2.2 Keil®-MDK-ARM MVision 27
3.2.3 SWASTMB2 . . e 28
4 Connectingtotheboard 29
4.1 SWD/TAG pinout e 29
4.2 Reset and connectionmode 31

2/99 DoclD030181 Rev 2 ‘Yl

AN4989 Contents
421 Presentation 31

422 IAR™ EWARM . .. 32

423 Keil® MDK-ARM MVISION 33

424 SWASTMBZ .. 37

425 ST-LINK utility 39

4.3 LOW-POWEN CASE oottt ettt e 40

5 Breaking and steppingintocode, 41
5.1 Debug support for timers, RTC, watchdog, BxCAN and 2C ... 41

52 Debug performance 41

5.21 IAR™ EWARM . .. 42

5.2.2 Keil® MDK-ARM MVISION 43

523 SWASTMBZ .. 44

53 Secure platform limitation L 46

5.31 R P . 46

5.3.2 PCROP . 47

6 Exceptionhandling, 48
6.1 Defaultweak Handlers 0 . 48

6.2 CustomHandlers 49

6.3 Trapping div/0 exception 51

6.3.1 Cortex®-MO/MO+ CaSeooree e 51

6.3.2 Cortex®-MB/A/T CaSEo e 52

7 Printfdebugging i i it ittt e eennan 58
71 STM32 Virtual-COM portdriver 58

7.2 Printf via UART 59

7.3 Printf via SWO/SWV 61

7.4 Semihosting 67

741 IAR™ EWARM . .. 68

7.4.2 Keil® MDK-ARM MVISION 69

7.4.3 SWASTMBZ .. 69

8 Debug through hardware exploration 71
8.1 Easy pinout probing with STMicroelectronics hardware kits 71

8.2 Microcontroller clock output (MCO) 71

‘W DoclD030181 Rev 2 3/99

Contents AN4989

8.2.1 Configuration with STM32CubeMX 71

8.22 HAL_RCC_MCOCONfIG . .ottt e ettt 73

8.2.3 STM32 Series differences 74

9 Fromdebugtoreleasecciiiiiiiiiiiiinnnnnns 76
10 Troubleshootingttty 77
Appendix A Managing DBGMCU registers.cciiinnn.. 78

A1 By the ST-LINK utility i 78

A2 By software e 79

A.3 Bydebugger e 80
Appendix B Use Nucleo “cutted” ST-LINK as stand-alone VCP 89
Appendix C Managing various targets onthesamePC 92
Appendix D Cortex®-M debug capabilities reminder. 97
Revision history i i i et tann e enannnnnn 98
4/99 DoclD030181 Rev 2 Kys

AN4989 List of tables

List of tables

Table 1. Applicable products 1
Table 2. ST-LINK software pack. e e 14
Table 3. STMicroelectronics documentation guide. 21
Table 4. STM32 Series RDP protectionextension. 47
Table 5. STM32 USART vs. PC terminal WordLengthexample. 61
Table 6. Troubleshooting 77
Table 7. STM32 Series vs. debug capabilties 97
Table 8. Document revision history 98

3

DocID030181 Rev 2 5/99

List of figures AN4989

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.

6/99

STM32 €COSYSIEM OVEIVIEW. . . . ettt et e e e et 9
Nucleo-144, Nucleo-64 and Nucleo-32 boards. i, 10
Discovery board example e 11
EVAL board example 12
ST-LINK, ST-LINK/V2, and ST-LINK/V2-ISOL stand-alone probes 13
On-board ST-LINK/V2on NuCleo e 13
STM32 software developmenttools e 15
STM32CubeProjectList screenshot 21
Getconnected to STM32 world 21
IAR™ EWARM Optimization option e 23
Keil® pVision Code Optimizationoption 24
SW4STM32 Optimization Level setting i, 25
IAR™ Generate debug Informationoption 26
Keil® Debug Information option 27
SW4STM32 Debug informationoption. 28
SWD pins PA13 and PA14 in Reset state under STM32CubeMX 29
SWD pins PA13 and PA14 in Reserved but inactive state

under STM32CUbeMX 30
SWD pins PA13 and PA14 in Active State under STM32CubeMX. 30
Reset Mode in IAR8.10: screenshot. 32
Connect and Reset option Keil® . o 33
Keil® hotplug StEPT v oot e e e e e e e 34
Keil® hotplug StEP2 o o oo e e et e 35
Keil® hotplug StEP3 v o oo ettt e e 36
Access to Generator Options in SW4STM32V2.0.0 37
Select Generator Options Reset Mode in SW4STM32V2.0.0...................... 38
Connection and reset mode in ST-Link utility 39
IAR™ EWARM ST-LINK SWD Speed setting 42
Keil® SWD Speed SEtiNG.o v oot e e e e 43
Access to Generator Options in SW4STM32V2.0.0 44
Generator Options Connection Setup in SW4STM32V2.0.0....................... 45
Asking for Handler code generation e 49
Keil® Access to Show Caller Code in Contextual menu.c..ooueo.... 51
Cortex®-M3 SCB_CCRDescription e e 52
Cortex-M3 SCB_CFSR Description e e 52
IAR™ exception handling 53
Keil® System Control and Configure. 54
Keil® FAUIt REPOMS o oo oo e e e e e e e e e e e 55
SWASTMS32 SCB register @CCeSS. . . . vttt e ettt e 56
Virtual-COM port on Windows® PCot 58
USART Pinout configuration with STM32CubeMX. 59
USART2 setting with STM32CubeMX e i 60
SWO Pin configuration with STM32CubeMX i 62
Semihosting/SWO configuration with IAR™ 63
IAR™ SWO Clock settingot e e e 64
SWO Configuration with Keil® 65
Access to SWV inKeil® 65
SWVin ST-LINK utility e 67

DoclD030181 Rev 2 ‘Yl

AN4989

List of figures

Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.

3

Semihosting configuration in IAR™ . 68
Semihosting procedure in SW4STM32. 69
Getting SW4STM32 reference version (1/2). 70
Getting SW4STM32 reference version (2/2). 70
MCO pin selection in STM32CubeMX 71
MCO alternate pin highlight exemple with LO73 72
MCO Multiplexer in STM32CubeMX Clock Configuration Pane. 73
STM32F4/F7 dual MCO capabilities. 75
ST-LINK utility Enable Low-Power debug option 78
DBMCU Register LL Library Functions. 79
DBGMCU_CR HAL Library Functions 80
Access to DBGMCU register with IAR™ . .. 81
EWARM C-SPY® Macro scriptsetting 82
Accessing DBGMCU register in Keil® MDK-ARM pVision (1/2). oL 83
Accessing DBGMCU register in Keil® MDK-ARM pVision (2/2))o 84
Keil® Initialization scriptsetting. 85
Access to Generator Options in SW4STM32V2.0.0 0., 86
Generator Options debug MCU in SW4STM32V2.0.0 87
Runtime R/W access to DBGMCU register with SW4STM32. 88
ST-LINK cuttable part of Nucleo. e 89
Using ST-LINK stand-alone part of Nucleo-L476RG asVCP 90
Virtual-COM porton PC side e 91
ST-LINK utility target selection pick list. L 92
Getting target ST-LINK S/N from the console. 93
IAR™ Debug Probe Selection pop-upwindow., 93
IAR™ Debug Probe Selection with nickname 94
Probe selection prompt setting on IAR™ 94
Keil® ST-LINK SEIECHONo\ttt 95
Forcing specific ST-LINK S/N with SW4STM32 96

DoclD030181 Rev 2 7/99

Foreword AN4989

1 Foreword

1.1 Software versions

The various examples in this application note are illustrated on basis of the following
versions of the tools:

e IAR™ EWARM: Vv8.10.1
¢ Keil® MDK-ARM pVision: V5.22
o SW4STM32: V2.0.0
o ST-LINK utility: V4.0.0
1.2 Acronyms

e AN: Application note

e CMSIS: Cortex microcontroller software interface standard
e HAL: Hardware abstraction layer (software library)
e |IDE: Integrated development environment

e JTAG: Joint Test Action Group

e MCO: Microcontroller clock output

e MCU: Microcontroller unit

e NVIC: Nested vector interrupt controller

e PM: Programming manual

e RM: Reference manual

e SB: Solder bridge

e SWD: Serial wire debug

e SWO: Single wire output

e SWV: Single wire viewer

e VCP: Virtual-COM port

3

8/99 DocID030181 Rev 2

AN4989

STM32 ecosystem outlines

2

2.1

211

3

STM32 ecosystem outlines

STMicroelectronics and its partners are providing a full hardware and software ecosystem to
support rapid evaluation, prototyping, and productizing of complete systems using STM32
microcontrollers.

As presented in Figure 1, the ecosystem is composed of all the collaterals required to
develop a project with STM32.

Figure 1. STM32 ecosystem overview

Hardware Development Software Development
Tools Tools
Open source

Evaluation boards Configuration Tools
Debug and Programming Probes Development & Debugging Tools
Monitoring Tools

Partners

Embedded Software Information and sharing

Drivers Web site
RTOS Product selectors
Stacks and Application Bricks Communities & Social Media

ST-designed

This chapter provides a global overview of the main elements composing the ecosystem,
outlining debug features and useful pointers, in order to guide the user among available
resources.

Hardware development tools

This section introduces the range of available development tools from hardware kits to ST-
LINK probes and alternative debugger interfaces.

Hardware kits

This section lists the hardware kits provided by STMicroelectronics for STM32-based
development:

e Nucleo boards

o Discovery kits

e Evaluation boards (EVAL)

DocID030181 Rev 2 9/99

STM32 ecosystem outlines AN4989

Nucleo boards

STM32 Nucleo boards are affordable solutions for user willing to try out new ideas and to
quickly create prototypes based on STM32 MCU.

Figure 2. Nucleo-144, Nucleo-64 and Nucleo-32 boards

L
T LR e
4 ‘ _._.qmn_.!q i s |

B g o

5% al
PR |
S

Oc,
i
i o T
‘ (3
e

[0ooocooon)

STM32 Nucleo boards feature the same connectors. They can easily be extended with a
large number of specialized application hardware add-ons.

Note: Nucleo-144 boards include ST Zio connector, which is an extension of Arduino™ Uno rev3,
and ST morpho connector.

Nucleo-64 boards include Arduino™ Uno rev3 and ST morpho connectors.
Nucleo-32 boards include Arduino™ Nano connectors.

All STM32 Nucleo boards integrate an ST-LINK debugger/programmer, so there is no need
for a separate probe.

A complete description of the embedded ST-LINK features is provided in Section 2.1.2: ST-
LINK probe on page 13. Additional information and access to Nucleo boards complete
documentation sets are available at www.st.com.

3

10/99 DocID030181 Rev 2

http://www.st.com

AN4989 STM32 ecosystem outlines

Discovery kits

STM32 Discovery kits are a cheap and complete solution for the evaluation of the

outstanding capabilities of STM32 MCUs. They carry the necessary infrastructure for
demonstration of specific device characteristics, the HAL library, and comprehensive
software examples allow to fully benefit from the devices features and added values.

Figure 3. Discovery board example

www com/stm32f4 dlscovery

(-l! lul ol
=) iy M niﬁ

STM37M29| DISCO rqo(

b
) .

Extension connectors give access to most of the device's I/Os and make the connection of
add-on hardware possible.

With the integrated debugger/programmer the Discovery kits are ideal for prototyping.

A complete description of the embedded ST-LINK features is provided in Section 2.1.2: ST-
LINK probe on page 13. Additional information and access to Discovery kits complete
documentation sets are available at www.st.com.

3

DocID030181 Rev 2 11/99

http://www.st.com

STM32 ecosystem outlines AN4989

EVAL boards

STM32 MCU EVAL boards have been designed as a complete demonstration and
development platform for the ARM® Cortex® STM32 MCUs.

Figure 4. EVAL board example

(e

They carry external circuitry, such as transceivers, sensors, memory interfaces, displays

and many more. The EVAL boards can be considered as a reference design for application
development.

EVAL boards have integrated ST-LINK (USB Type-B connector). For complete description
of the embedded ST-LINK features refer to Section 2.1.2: ST-LINK probe.

EVAL board has direct access to JTAG/Traces signal through dedicated ARM® JTAG 20-pin

connector allowing advanced debug (ETM). For usage of ETM traces refer to Section 2.1.3:
Alternative debugger probes on page 15.

The usage of a stand-alone probe may require some jumper and solder bridge adaptation
from default. Refer to the specific board user manual.

For further information and access to complete documentation visit
www.st.com/stm32evaltools

12/99 DocID030181 Rev 2

3

AN4989

STM32 ecosystem outlines

2.1.2

3

ST-LINK probe

The ST-LINK is the JTAG/Serial Wire Debug (SWD) interface used to communicate with any
STM32 microcontroller located on an application board.

It is available as:

e Stand-alone in-circuit debugger

e Embedded in all STM32 hardware kits (Nucleo boards, Discovery kits, EVAL boards)

Figure 5 shows the first ST-LINK version on the left and the ST-LINK/V2 and ST-LINK/V2-
ISOL stand-alone probes on the right.

Figure 5. ST-LINK, ST-LINK/V2, and ST-LINK/V2-ISOL stand-alone probes

Figure 6 shows an example of an embedded ST-LINK/V2 as part of a Nucleo board.

Figure 6. On-board ST-LINK/V2 on Nucleo

S /51136
M rev C

- X3
5| cxma E5E5 - v %
www.st.com/stm32nucleo Q .

DocID030181 Rev 2 13/99

STM32 ecosystem outlines AN4989

Note:

Note:

14/99

Both stand-alone and embedded versions share the same ST-LINK/V2 basic features:
e 5V power supplied by a USB connector

e USB 2.0 full-speed-compatible interface

e USB standard A to Mini- B cable

e JTAG/serial wire debug (SWD) specific features:

— 1.65Vto 3.6 V application voltage supported on the JTAG/SWD interface and 5V
tolerant inputs

— JTAG cable for connection to a standard JTAG 20-pin pitch 2.54 mm connector
— JTAG supported
— SWD and serial wire viewer (SWV) communication supported

e Device Firmware Upgrade (DFU) feature supported

e Status LED which blinks during communication with the PC

e Operating temperature 0 °C to 50 °C

e 1000 V rms high-isolation voltage (ST-LINK/V2-ISOL only)

Embedded versions usually supports the following additional features:
e Virtual-COM-port interface on USB. (VCP)
e Mass storage interface on USB

The availability of these additional features depends on software version.

In order to identify the ST-LINK version on a board and the related features associated with
it, please refer STMicroelectronics technical note Overview of the ST-LINK embedded in
STM32 MCU Nucleo, Discovery Kits and Eval Boards (TN1235).

On-board ST-LINK does not support JTAG port.

For Nucleo and Discovery, JTAG port signal can be wired through Morpho / Arduino™
connectors. On EVAL boards, there is a dedicated 20-pin connector.

The use of ST-LINK requires the software packages listed in Table 2.

Table 2. ST-LINK software pack

Part Number Description

STSW-LINK0O4 | STM32 ST-LINK utility (refer to Section 2.2.4: ST-LINK utility on page 19)
STSW-LINKOO7 | ST-LINK, ST-LINK/V2, ST-LINK/V2-1 firmware upgrade

ST-LINK, ST-LINK/V2, ST-LINK/V2-1 USB driver signed for Windows® 7,
Windows® 8, Windows® 10

STSW-LINKO09

STSW-LINKOO7 is included in STSW-LINK004.

STSW-LINKO009 is included in most IDE installation packages (IAR™, Keil®, SW4STM32)
and tools.

Tip: It is recommended to use the latest firmware version of the on-board ST-LINK
interface. Firmware upgrade can be performed thanks to the ST-LINK utility
software (refer to Section 2.2.4: ST-LINK utility on page 19).

DocID030181 Rev 2 ‘Yl

AN4989

STM32 ecosystem outlines

213

2.2

Alternative debugger probes

J-LINK (Segger), I-Jet™ (IAR™), and U-LINK (Keil®) are the most common alternatives
providing features equivalent to the ones provided by ST-LINK.

For most advanced debugging needs, requiring heavy traffic or ETM port tracing, ST
recommends to use:

e U-Link Pro in combination with Keil® MDK-ARM MVISION
e |-Jet™ Trace in combination with IAR™ EWARM

For a complete catalog of solutions, refer to www.st.com.

Software development tools

The STM32 family of 32-bit ARM® Cortex®-M core-based microcontrollers is supported by a
complete range of software tools.

It encompasses traditional integrated development environments - IDEs with C/C++
compilers and debuggers from major third-parties that are complemented with tools from ST
allowing to configure and initialize the MCU or monitor its behavior in run time.

It offers a complete flow, from configuration up to monitoring as illustrated in Figure 7.

Figure 7. STM32 software development tools

FREE
IDE's

o st 36 [[m

SYSIEMS

ARDUINO

ARMmbed | | TASKING | | sy) 4 ‘E‘l‘ﬂm 7 “., 1 i
KEBLABS || CooCax ZMPROG ‘ S F= ; Jl]_l-LIIH_H:I,'
STM32CubeMX Partners IDEs STMStudio
Configure & Generate Code Compile and Debug Monitor
‘Yl DoclD030181 Rev 2 15/99

http://www.st.com

STM32 ecosystem outlines AN4989

2.21

16/99

STM32CubeMX

STM32CubeMX is a graphical tool that allows to easily configure STM32 microcontrollers
and to generate the corresponding initialization C code through a step-by-step process.

1.

The first step consists in selecting the STM32 microcontroller that matches the required
set of peripherals. MCU can be selected as stand-alone for custom PCB (MCU
Selector) or pre-integrated into one of STMicroelectronics hardware kit (Board
Selector)

In the second step, the user must configure each required embedded software thanks
to a pinout-conflict solver, a clock-tree setting helper, a power-consumption calculator,
and a utility performing MCU peripheral configuration (GPIO, USART, and others) and
middleware stacks (USB, TCP/IP, and others).

Finally, the user launches the generation of the initialization C code based on the

selected configuration. This code is ready to be used within several development
environments. The user code is kept at the next code generation.

Key features

Intuitive STM32 microcontroller selection
Microcontroller graphical configuration

Pinout with automatic conflict resolution

Clock tree with dynamic validation of configuration

Peripherals and middleware functional modes and initialization with dynamic validation
of parameter constraints

Power consumption calculation for a user-defined application sequence

C code project generation covering STM32 microcontroller initialization compliant with
IAR™ Keil® and GCC compilers.

Available as a standalone software running on Windows®, Linux®, and macOS™
operating systems, or through Eclipse plug-in

3

DoclD030181 Rev 2

AN4989

STM32 ecosystem outlines

2.2.2

3

Partner IDEs

In this application note, all topics are declined for the three main IDEs:
1. IAR™ EWARM

2. Keil® MDK-ARM pVISION

3. SW4STM32

IAR™ EWARM

The IAR Embedded Workbench® for ARM® (IAR™ EWARM) is a software development
suite delivered with ready-made device configuration files, flash loaders and 4300 example
projects included. IAR Systems® and STMicroelectronics closely cooperate in supporting
32-bit ARM® Cortex®-M based microcontrollers.

Key Features

e Key components:
— Integrated development environment with project management tools and editor
— Highly optimizing C and C++ compiler for ARM®
— Automatic checking of MISRA C rules (MISRA C:2004)
- ARM® EABI and CMSIS compliance
— Extensive HW target system support
— Optional I-jet™ and JTAGjet™-Trace in-circuit debugging probes
— Power debugging to visualize power consumption in correlation with source code
— Run-time libraries including source code
— Relocating ARM® assembler
— Linker and librarian tools

- C-SPY®debugger with ARM® simulator, JTAG support and support for RTOS-
aware bugging on hardware

— RTOS plugins available from IAR™ Systems and RTOS vendors
— Over 3100 sample projects for EVAL boards from many different manufacturers
— User and reference guides in PDF format
— Context-sensitive on-line help
e Chip-specific support:
— 4300 example projects included for STMicroelectronics EVAL boards
— Support for 4 Gbyte applications in ARM® and Thumb® mode
— Each function can be compiled in ARM® or Thumb® mode
— VFP Vector Floating Point co-processor code generation
e Intrinsic NEON™ support
e ST-LINK and ST-LINK V2 support

This product is supplied by a third party not affiliated to ST. For the latest information on the
specification, refer to the IAR™ web site at http://www.iar.com.

Keil2 MDK-ARM pVision

The MDK-ARM-STM32 is a complete software development environment for Cortex®-M
microcontroller-based devices. It includes the pVision IDE/Debugger, ARM®C/C++ compiler

DocID030181 Rev 2 17/99

STM32 ecosystem outlines AN4989

18/99

and essential middleware components. The STM32 peripherals can be configured using
STM32CubeMX and the resulting project exported to MDK-ARM.

Free MDK-ARM licenses can be activated for both STM32F0 and STM32L0 Series using
the following Product Serial Number (PSN): U1E21-CM9GY-L3G4L.

This product is supplied by a third party not affiliated to ST. For the latest information on the
specification refer to the third party's website: http://www2_ keil.com/stmicroelectronics-
stm32.

Key Features

e Complete support for Cortex®-M devices

e ARM® C/C++ compilation toolchain

e uVision IDE, debugger and simulation environment

e CMSIS Cortex® Microcontroller Software Interface Standard compliant
e ST-LINK support

e Multi-language support: English, Chinese, Japanese, Korean

SW4STM32

The System Workbench for STM32 toolchain, called SW4STM32, is a free multi-OS
software development environment based on Eclipse, which supports the full range of
STM32 microcontrollers and associated boards.

The SW4STM32 toolchain may be obtained from the website www.openstm32.org, which
includes forums, blogs, and trainings for technical support. Once registered to this site,
users get installation instructions at the Documentation > System Workbench page to
proceed with the download of the free toolchain.

The SW4STM32 toolchain and its collaborative website have been built in collaboration with
ACB, a service company providing training and consultancy on embedded systems.

This product is supplied by a third party not affiliated to ST. For the latest information on the
specification, refer to the third party's website: www.ac6.1r.

Key Features

e Comprehensive support for STM32 microcontrollers, STM32 Nucleo boards, Discovery
kits and EVAL boards, as well as STM32 firmware (Standard Peripheral library or
STM32Cube HAL)

e GCC C/C++ compiler

e GDB-based debugger

e Eclipse IDE with team-work management

e ST-LINK support

¢ No code size limit

e Multiple OS support: Windows® (32 and 64 bits), Linux (64 bits) and MacOS™
In case of installation or update through the Eclipse Help -> Install New software... menu,
the following dependences for SW4STM32 V2.0.0 are required:

e Eclipse Mars2 or Neon

e CDT8.81

e Java1.8

3

DoclD030181 Rev 2

AN4989

STM32 ecosystem outlines

2.2.3

224

3

All above dependences are properly managed in case of All-in-one installer package or
through Help -> Check For Updates (recommended).

STMStudio

STMicroelectronics STMStudio helps debug and diagnose STM32 applications at run time
by reading and displaying their variables in real-time.

Running on a PC, STM Studio interfaces with STM32 MCUs via the standard ST-LINK
probe.

STMStudio is a non-intrusive tool, preserving the real-time behavior of applications.

STMStudio perfectly complements traditional debugging tools to fine tune applications. It is
well suited for debugging applications which cannot be stopped, such as motor control
applications.

Different graphic views are available to match the needs of debugging and diagnosis or to
demonstrate application behavior.

Key Features

e Runs on PCs with Microsoft® Windows® OS (XP, Vista, 7, 8, or 10)

e Connects to any STM32 via ST-LINK (JTAG or SWD protocols)

e Reads on-the-fly (non intrusive) variables from RAM while application is running

e Parses DWARF debugging information in the ELF application executable file

e Two types of viewer:
— Variable viewer: real-time waveforms, oscilloscope-like graphs
— TouchPoint viewer: association of two variables, one on the X axis, one on the Y

axis

e Possibility to log data into a file, and replay later (exhaustive record display, not real-

time)

More information about the way to use STMStudio are available in STMicroelectronics user
manual Getting started with STMStudio (UM1025).

ST-LINK utility

STM32 ST-LINK utility (STSW-LINKO04) is a full-featured software interface for
programming STM32 microcontrollers.

It provides an easy-to-use and efficient environment for reading, writing and verifying a
memory device.

The tool offers a wide range of features to program STM32 internal memories (Flash, RAM,
OTP and others), external memories, to verify the programming content (checksum, verify
during and after programming, compare with file) and to automate STM32 programming.

STM32 ST-LINK utility is delivered with a graphical user interface (GUI) and with a
command line interface (CLI).

DocID030181 Rev 2 19/99

STM32 ecosystem outlines AN4989

Key Features

e Free software
e Supports Motorola S19, Intel HEX and binary formats

e Load, Edit and Save executable and data files generated by the Assembler/Linker or C
compilers

e Erase, Program, View and Verify device Flash memory contents

e Program, Erase and Verify external memories with examples of external flash loaders,
for users to develop loaders for specific external memories

e Automate STM32 programming (Erase, Verify, Programming, Configuring option bytes,
calculate checksum)

e Programming One Time Programmable memory

e Supports Programming and Configuring Option bytes

e Offers a command line interface

e Compare file with target memory

e Supports memory and core status view in Live-update mode
e ST-LINK/V2 firmware upgrade

In debug context ST-LINK is useful:
e To check and update ST-LINK/V2 firmware in case of connection issue

e Recover connection to a board in case of stuck in permanent Low-power or secure
state.

e Usage of SWV for printf debugging (Refer to Chapter 7: Printf debugging on page 58)

Refer to STMicroelectronics user manual STM32 ST-LINK utility software description
(UM0892).

2.3 Embedded software

The STM32Cube embedded software libraries provides:

e The HAL hardware abstraction layer, enabling portability between different STM32
devices via standardized API calls

e The Low-Layer (LL) APIs, a light-weight, optimized, expert oriented set of APIs
designed for both performance and runtime efficiency

e A collection of Middleware components, like RTOS, USB library, file system, TCP/IP
stack, Touch sensing library or Graphic Library (depending on the MCU series)

e A complete set of code examples running on STMicroelectronics boards: STM32
Nucleo, Discovery kits and EVAL boards

Tip: There is a fair chance that a Cube Project example matches the project in design.
At project start or if an issue is met, it is worth browsing the complete project list
package content available in
CubelLibraryFolder\Projects\ STM32CubeProjectsList.html (refer to Figure 8).

3

20/99 DocID030181 Rev 2

AN4989 STM32 ecosystem outlines

Figure 8. STM32CubeProjectList screenshot

@R] _Printf }his example shows how 1o re-route the C library printd function to the UART. - i
A | !

:UARI _TwoBoards. ComDMAa

i I T |
|This example describes an UART t ission (b it/receive) In DMA maode -,
|between two boards.

UART

| - Thi e 5 an UART t — it/recetve) In Interrugpt |
IUART_TwoBoards_ComiT S T Souve) In- oy |

24 Information and sharing

STMicroelectronics offers a very complete and wide range of solution on the web to get
connected to STM32 World.

Figure 9. Get connected to STM32 world

st.com @ ST MCU Finder community.st.com

i @ 9O

ﬁ/’ ’&
W Windows . - -
[— |
5 ! macOS™ (%) o %)

facebook.com/stm32

youtube.com/STonlineMedia

twitter.com/@ST_World

linkedin.com/stmicroelectronics

211C

HBO0OD

YouKu

Information MCU Selection

Community Social Media

241 Documentation

Several types of documentation are available on www.st.com. Table 3 provides a reminder
of the main technical documents with a short description of their contents.

Table 3. STMicroelectronics documentation guide

Acronym Name Content

DB Data Brief Preliminary Product Specification before complete maturity

Product Specifications, Hardware feature and Electrical Characteristics
DS Data Sheet (Pinout/Alternate function definition table, Memory Map, Electrical
Characterization etc.)

How to use the targeted microcontroller series, memory and

RM Reference Manual peripherals.(registers details, default/reset value etc.)
L “How to make” guide helping to achieve a specific application with the

AN Application Note targeted MCU.

UM User Manual How To Use” guide for a specific software of hardware product (board,
software tools etc.)

™ Technical Note Very brief document addressing single technical aspect. Can be seen as a
complement of AN or UM documents

ES Errata Sheet Contained known issues and device limitation.

. . . ®_
PM Programmer Manual Target software developer with a full description of the STM32 Cortex™-M

processor programming model, instruction set and core peripherals

3

DocID030181 Rev 2 21/99

http://www.st.com

STM32 ecosystem outlines AN4989

2.4.2

2.4.3

22/99

Tip: The MCU Finder application can be useful for document access and
bookmarking in addition to its primary usage for identifying the
suitable STM32 product. The MCU Finder application is available for r
use on PC, smartphone, and tablet. More information is available on . ‘7’-
www.st.com.

Trick: When an Internet search engine is used to get access to STMicroelectronics
documents, it is advised to search with an explicit mention of STMicroelectonics
web site so that references to genuine documents are obtained. In the Google
Toolbar™ search bar, the following syntax can be used:

“[Document reference or key word]” site:www.st.com filetype:pdf

ST Community

STMicroelectronics new community is now live and ready for receiving questions, sharing
projects and collaborating among fellow community members. The focus is on collaboration
because the primary purpose of this community is to share with peers and help them in a
transparent way that showcases the world of STMicroelectronics products, activities and
achievements.

The home page of ST Community is https://community.st.com/welcome.

For any problem met, it is interesting to first browse the STM32 Forum for related topics and
eventually to post a new one if no relevant thread is found.

STM32 Education

STM32 education material is available on-line at www.st.com (search for STM32
Education).

This site provides free educational resources created by STMicroelectronics engineers for
bringing an STM32 project to life.

On this site, a user learns at his own pace, watches classes as per his own schedule,
anytime, anywhere, on any device, or apply to one of the live learning sessions led by
STMicroelectronics experts at a nearby location.

Content:

¢ Online Training
e MOOC

e Videos

e Webinar

e Textbooks

e ST training courses

e Partner training courses

3

DoclD030181 Rev 2

http://www.st.com
http://www.st.com
http://www.st.com

AN4989

Compiling for debug

3 Compiling for debug

This chapter reviews the various options for debug-friendly compiling solutions.

3.1

Optimization

Compiler are usually configured by default to optimize performance and/or code size. In
most cases, this reduces or even prevents program debugging.

The most common symptoms resulting from code optimization are:

e Problem to set or reach a breakpoint. Some lines are not accessible.
e Impossibility to evaluate a variable (watch feature).

e Inconsistency while stepping (what | get, is not what | see).

Therefore, for efficient debugging it is recommended to modify the code optimization option.

3.1.1

IAR™ EWARM

In Project option -> C/C++Compiler -> Optimization

Figure 10. IAR™ EWARM Optimization option

-

Options for node "Project”

5=

Categary:

General Options
Static Analysis
Runtime Checking
Assembler
Output Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
CADI
CMSIS DAP
GDB Server
Ijetf/ITAGjet
Iink/J-Trace
TI Stellaris
PE micro
STLIMK
Third-Party Driver
TI MSP-FET
TIXDS

[hulti-file Compilation
Discard Unused Publics

l Factory Setings l

Diagnostics | MISRA-C2004 | MISRA-C:1998 | Encodings | Extra Options

Language 1 | Language 2 | Code | Optimizations |Output | List

| Preprocessor

Level Enabled transformations:

6. Naone |:|Ci-:-mm-:-n subexpression elimination s
)Low [CJLoop .unr-.:-ll?n 9 T

N . [C]Function inlining
(L) Medium [C]Code mation L
I High [C|Type-based alias analysis 1

. [C|Static clustering
Size h [[]instruction scheduling P

No size constraints || Vectorization

[8]] [Cancel

3

DoclD030181 Rev 2

23/99

Compiling for debug AN4989

3.1.2 Keil® MDK-ARM pVision

In Project Option->C/C++->Optimization

Figure 11. Keil® HVision Code Optimization option

E Options for Target ‘MyProject’ ﬂ

Device' Target' Output| Listing' User CfC++ |Asm | Linkerl Debugl Utilitiesl

— Preprocessor Symbaols

Define: IUSE_HAL_DRIVER,STM32F302x8

Undefine: I

— Language |/ Code Generation

[~ Execute-only Code [~ Strict ANSIC Warnings:
Optimization: |Level 0 (-O) - l [~ Enum Container always int IA” Warnings LI
[~ Optimize f{<default> [~ Plain Char s Signad [T Thumb tode
I_ SplitLoad |_V| 1{-01) I_ Read-Only Position Independent I_ Mo Auto Includes
[¥ OneELFS t:::: % E:g% [~ Read-Write Position Independent [~ €99 Mode
|”FC,|U$9 I..,‘Inc:..,’DriversJ’STM32F3n_HAL_Driver,‘Inc:..J’Drivers,‘STMBZFBxx_HAL_Driver,’Inc,’Legacy:..,‘Drivers,‘CMSIS,‘[D
aths
Misc I_ng
Controls
Compiler |-c —cpu Cortex-M4fp -D__MICRGLIB -g -00 —apcs=interwork —split_sections -1 .{Inc -| -
control | /Drivers/STM32F3:x¢_HAL_Driver/inc -1 _[Drivers/STM32F3x_HAL_Driver/inc/Legacy -l
string |../Drivers/CMSIS/Device/ST/STM32F3xx/Include -1 _[Drivers/CMSIS/Include —-C39 &7

[ok || cancel || Defauts |

Keil® documentation suggests that Level1 (-O1) can be a suitable alternative for debug.

Refer to www.keil.com support page Compiler optimization levels and the debug view for
details.

24/99 DocID030181 Rev 2

3

AN4989

Compiling for debug

3.1.3 SW4STM32

In project Properties->Settings->Tool Settings->MCU GCC Compiler->Optimization

Figure 12. SW4STM32 Optimization Level setting

& Properties for MyProject

type filter text Settings
» Resource
Builders
4 C/C++ Build Configuration: IDebug [Active]

'] [Manage

Configurations...

Build Variables
Environment

- - -
Logging i Tool Settings ‘,ﬁ- Build Steps

Build Artifact | & Targetl Binary Parsersl @ Error Parsers|

m

Settings
Toal Chain Editor
» C/C++ General
Linux Tools Path
Project References
Run/Debug Settings
» Task Repository
WikiText

MCU Settings

4 % MCU GCC Compiler
(# Dialect
(# Preprocessor
(# Symbols
(2 Includes
(2 Optimization
¢ Debugging
& Warnings
& Miscellaneous

4 & MCU GCC Linker
(# General

Optimization Level

Other optimization flags

[Nene 00)

Place the function in their own section (-ffunction-sections)

[] Place the data in their own section (-fdata-sections)

OK

Cancel

||

gcc also provides the -Og option:

-Og enables optimizations that do not interfere with debugging. It offers a reasonable level
of optimization while maintaining fast compilation and a good debugging experience.

3.2 Debugging information

Debugging information is generated by the compiler together with the machine code. It is a
representation of the relationship between the executable program and the original source
code. This information is encoded into a pre-defined format and stored alongside the

machine code.

Debugging information is mandatory to set breakpoint or get the content of a variable.

This chapter presents the location of the Debugging Information related option in IAR™,

Keil®, and SW4STM32.

3

DoclD030181 Rev 2

25/99

Compiling for debug

AN4989

3.2.1

IAR™ EWARM

"Generate debug information" option tick box is accessible in Options -> C/C++ Compiler -

> Output Pane
Itis set by default.

Figure 13. IAR™ Generate debug Information option

-

Options for node "Project”

=)

Categany:

General Options
Static Analysis
Runtime Checking
Assembler
Output Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
CADI
CMSIS DAP
GDE Server
I-jet/TTAGet
JLink/1-Trace
TI Stellaris
PE micra
STLIMK
Third-Party Driver
TI MSP-FET
TILXDS5

l Factory Settings

l

[] tutti-file Compilation
Discard Unused Publics

Diagnostics | MISRA-C:2004 | MISRA-C:1998 | Encodings | Extra Options

Language 1 | Language 2 | Code | Optimizations | Output |List | Preprocessor

Generate debug information

Code section name:
text

26/99

DocID030181 Rev 2

3

AN4989

Compiling for debug

3.2.2 Keil®-MDK-ARM pVision

Debug Information Tick box is accessible in Options -> Output Pane.

It is set by default.

Figure 14. Keil® Debug Information option

ﬂ Options for Target "MyProject’

Devicel Target Output | Lisﬁngl User I CfCH—l Asm | Linkerl Debugl Uﬁliﬁesl

Select Folder for Objects... | Name of Executable: IMyProject

(# Create Executable: MyProjectiMyProject
[v Debug Information
[~ Create HEX File

[v Browse Information

(" Create Library: MyProjectiMyProjectlib

[~ Create Batch File

OK I Cancel Defaults

Help |

3

DocID030181 Rev 2

27199

Compiling for debug AN4989

3.2.3 SW4STM32

Option to manage Debugging Information are in Properties -> C/C++ Build -> Settings ->
Tool Settings -> Debugging.

Figure 15. SW4STM32 Debug information option

< Properties for Debug_RTC_F3Nucleo (=] -
| Settings M
> Resource i
Builders
4 C/C++ Build Configuration: ’Debug [Active | 'l [Manage Configurations...

Build Variables
Environment

Logging ¥ Tool Settings |.5"' Build Steps Build Artifactl (¥ Targetl Binary Parsetsl @ Error Parsers| 3
Settings o (# MCU Settings Debug Level IMaximum (-g3) —
Tool Chain Editor 4 ® MCU GCC Campiler)

> C/C++ General (& Dialect Other debugging flags

Linux Tools Path [] Generate prof information (-p)

 Preprocessor

Project Referenc_es Symbols [] Generate gprof information (-pg)
Run/Debug Settings 2 Includes [l Generate gcav information (-ftest-coverage -fprofile-arcs)
» Task Repository

Optimization

WikiText (# Debugaing
Warnings
Miscellaneous
4 B MCU GCC Linker o
(':7) OK l ’ Cancel

Debug Level can be set among four levels:

e None (-g0): Level 0 produces no debug information at all; -g0 negates -g.

e Minimal (-g1): Level 1 produces minimal information, enough for making backtraces in
parts of the program for which no debug is planned. This includes descriptions of
functions and external variables, and line number tables, but no information about local
variables.

e Default (-g/-g2): Produce debugging information in the operating system's native format
(stabs, COFF, XCOFF, or DWARF). GDB can work with this debugging information.

e Maximal (-g3): Level 3 includes extra information, such as all the macro definitions
present in the program. Some debuggers support macro expansion when -g3 is used.

The same pane contains the options to add profiling information.

For further information, refer to Section 3.1 Option Summary available at http://gcc.gnu.org.

28/99 DoclD030181 Rev 2 Kys

AN4989

Connecting to the board

4

4.1

3

Connecting to the board

The way IDEs get connected to the boards is not always known. In case of trouble, a basic
knowledge about this topic can save time in identifying and fixing the issue.

This chapter intends to provide the minimal set of information in order to prevent or quickly
fix issues related to connection.

SWD/JTAG pinout

On STMicroelectronics hardware kits, SWD must be made available for connection with ST-
LINK.

SWD is always mapped on PA13 (SWDIO) and PA14 (SWCLK). This is the default state
after reset.

Nothing specific is required in the application code to make SWD work.

Special attention must be paid to make sure that, voluntarily or accidentally, the SWD pins
are not switched to some alternate functions or affected by I/O settings modifications.

Hint: For instance, STM32Cube PWR examples switch all GPIO (including SWD) in an
analog state in order to minimize consumption. This disconnects the debugger. A
Connect Under Reset using NRST is required to take back the control of the
board. (Refer to Section 4.2).

When using STM32CubeMX at configuration stage, PA13 and PA14 can be in one of three
states upon selection of Serial Wire in SYS/Debug configuration list:

e Reset, shown by the pins colored in gray in Figure 16
e Reserved but inactive shown by the pins colored in orange in Figure 17
e Active shown by the pins colored in green in Figure 18

Figure 16. SWD pins PA13 and PA14 in Reset state under STM32CubeMX

DocID030181 Rev 2 29/99

Connecting to the board

AN4989

30/99

Figure 17. SWD pins PA13 and PA14 in Reserved but inactive state

under STM32CubeMX

SY'S_ T CK-SWCLK

PA14s,

SYS_ITMS-SWDIO

Figure 18. SWD pins PA13 and PA14 in Active State under STM32CubeMX

- & SWPMI1
=-4) sys
: é---Debug ;Trace Asynchronous Sw v;—
-.[7] sy|Disable
Serial Wire
JTAG (4 pins)
ITAG (5 pins)
Trace Asynchronous Sw

n

- [sy

--Power Voltage Detector In i__DisabIe '
~ “~Timebase Source SysTick X
-4 TIM1

SYS_JTMS-SWDIO

All three states are functional from SWD connection point of view.

JTAG is not available on Nucleo and Discovery boards.

DocID030181 Rev 2

On EVAL boards, it is available through a dedicated 20-pin connector.

It is anyway recommended to explicitly activate the SWD pins by selecting “Serial Wire” or
“Trace Asynchronous SW” (together with SWO. Refer to Section 7.3 on page 61). This is the
only way by which STM32CubeMX protects the 1/0 from being selected for another use
during the configuration process by highlighting the conflict to the user.

Nevertheless, in STM32CubeMX, SWD remains the default and preferred debug port. For
this reason, extra JTAG pins are not reserved. It is then strongly advised to explicitly enable
the desired JTAG configuration.

S74

AN4989 Connecting to the board

Especially since JTAG is using more pins, users should be aware that it is at the expense of
using some IPs.

Refer to the product datasheet for a detailed presentation of the default and alternative
function mapping for each pin.

4.2 Reset and connection mode

This section reviews the reset and connection mode available while using ST-LINK/V2
debug interface.

421 Presentation

Connection mode and reset mode are 2 different but dependent concepts:

Reset mode can be either:

e Hardware: drive the NRST pin of the MCU. In all STMicroelectronics hardware kits, the
debugger can drive this NRST through ST-LINK/V2.

Hint: On Nucleo, check that relevant Solder Bridge SB12 is not OFF.

e Software (write to core register)
— System: Core and all Peripheral SOC IPs are reset
— Core: Only ARM® Cortex® is reset

Connection mode can be either:

e Normal: Debugger takes control through JTAG/SWD port and starts execution after a
software reset.
This is working only if JTAG/SWD is available:
— GPIO correctly configured and clocked
— FCLK or HCLK enabled
— Main Power domain or Low-Power debug active

e ConnectUnderReset: Debugger takes control while asserted NRST pin, setting GPIO
and clock into there default state.
This is required in case of a reconnection to a system in Low-Power mode or which has
changed SWD pin to alternate functions.

e Hotplug: Debugger connect without reset nor halt. Once connected, the user can chose
to perform the required action (typically halt to get where the program stands and read
registers or memory for instance).

Reset and Connection mode are differently accessible and exposed depending on tool and
IDE.

3

DocID030181 Rev 2 31/99

Connecting to the board

AN4989

4.2.2 IAR™ EWARM

Reset and Connection mode are seen as a single reset mode option as shown in Figure 19.

Figure 19. Reset Mode in IAR8.10: screenshot

-

Options for node "Project”

-

Category:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Qutput Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
CADI
CMSIS DAP
GDB Server
I-jet/ITAGjet
J-Link/I-Trace
TI Stellars
PE micro
ST-LINK
Third-Party Driver
TIMSP-FET
TIXDS

Factory Settings

Setup Communication | Breakpoints

Emulator
ST-LINK v2 Serial no:

[Always prompt for probe selection

Reset

System (default) -
System (defaulf
Core
In Software
Hardware
! Connect during reset

@swp Lot —

| Specify 0

[o | coca |

e System (default):Normal Connection. Software System Reset prior to jump at main.
e Core:Normal Connection. Software Core Reset prior to jump at main.

e Software:Normal Connection. No Reset prior to jump and stop at main.

e Hardware: Normal Connection. Assert NRST MCU pin prior to jump to main.
e Connect during reset: Connection while asserted Hardware NRST.

Hotplug connection is accessible with "Attach to running Target" function in project menu.

32/99

DoclD030181 Rev 2

3

AN4989

Connecting to the board

4.2.3 Keil® MDK-ARM MVISION
Can be set through
Options -> Debug -> Settings -> Debug
Figure 20. Connect and Reset option Keil®
ﬂ Options for Target ‘MyProject’ Y
Device1 Target] Outputl Lisﬁngl User] CICH] Asm] Linker Debug IUﬁIines] ‘
(" Usq Cortex-M Target Driver Setup - . - . - ﬁ
[~ Lim
4| Debug]Trace] Flash Download]
[+ Loa Debug Adapter SW Device
AL Unit: [ST-LINK/V2-1 ~] e :
Serial Number: SWDIO ST-LINK connection error In
_Ret [oe6BFF565251887067012659 :
2 b HW Version: |V2-1
2 FW Version: [VOJOMO & Automatic Detaction D CODE
CPUD Max Clock: [18MHz ~] d | | Dot | | Updete | IR
SARM s
Dialog] —Connect & Reset Options —Cache Options —Download Options
W Connect]under Reset LJ Reset |Autodetect L] [v Cache Code [Verify Code Download
[# Resetafter Connect Autodetect [v Cache Memory [Downloadto Flash
i HW RESET i
SYSRESETREQ
VECTRESET

0K | Annuler ‘

3

Connect: controls the operations that are executed when the pVision debugger connects to
the target device. The drop-down has the following options:

e Normal just stops the CPU at the currently executed instruction after connecting.
e with Pre-reset applies a hardware reset (HW RESET) before connecting to the device.

e under Reset holds the hardware reset (HW RESET) signal active while connecting to
the device. Use this option when the user program disables the JTAG/SW interface by
mistake.

Reset after Connect: performs (if enabled) a reset operation as defined in the Reset drop-
down list (see below) after connecting to the target. When disabled, the debugger just stops
the CPU at the currently executed instruction after connecting the target.

DocID030181 Rev 2 33/99

Connecting to the board AN4989

Reset: controls the reset operations performed by the target device. The available options
vary with the selected device.

e Autodetect selects the best suitable reset method for the target device. This can be a
specialized reset or standard method. If Autodetect finds an unknown device, it uses
the SYSRESETREQ method.

e HW RESET performs a hardware reset by asserting the hardware reset (HW RESET)

signal.

e SYSRESETREQ performs a software reset by setting the SYSRESETREQ bit. The

Cortex®-M core and on-chip peripherals are reset.

e VECTRESET performs a software reset by setting the VECTRESET bit. Only the
Cortex®-M core is reset. On-chip peripherals are not reset. For some Cortex®-M
devices, VECTRESET is the only way they may be reset. However, VECTRESET is
not supported on Cortex®-M0, Cortex®-M0+, Cortex®-M1, and ARM®v8-M cores.

Refer to http://www.keil.com/

Hotplug

If all of the following options are disabled, no hardware reset is performed at debugger start:

e Options For Target - Debug - Load Application at startup

e Options For Target - Debug - Settings - Reset after connect (with Options For Target -

Debug - Settings - Connect selected as NORMAL)
e Options For Target - Utilities - Update Target before Debugging

Figure 21. Keil® hotplug step1

m Options for Target "MyProject’

=)

Devicel Target] Output] Listing] User] C,‘CH—I Asm l Linker Debug lUtiIities]

(" Use Simulator with restrictions Seftings ® Use: |ST—LinI-(Debugger ﬂ Settings
[LimitSpeedto Real-Time
[v Load Application at Startup [v Run to main{) | [Load Application at Startup] [+
Initialization File: Initialization File:
Restore Debug Session Settings Restore Debug Session Settings

[+ Breakpoints v Toolbox [+ Breakpoints v Toolbox

[v Watch Windows & Perfarmance Analyzer [v Watch Windows

[v Memory Display |v System Viewer [v Memory Display |v System Viewer
CPUDLL: Parameter: Driver DLL: Parameter:
|SARMCM3.DLL |-MPU -REMAP |SARMCM3.DLL |-MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
|DCM.DLL |-pCM4~ |TCM.DLL |-pCM4

Manage Component Viewer Description Files ... ‘

OK | Cancel Defaults |

Help

34/99

DoclD030181 Rev 2

3

AN4989

Connecting to the board

Figure 22. Keil® hotplug step2

-

Cortex-M Target Driver Setup

Debug | Tracel Flash Downfoadl
— Debug Adapter

—SW Device

Unit [ST-LINK/V2-1

Serial Mumber:

L‘ IDCODE

| Device Name

SWDIO

I 0668FF565251887067012659

HW Version: |V2—1
FW Version: |V2J25M14
Port |SW vl

x2BA01477 ARM CoreSight SW-DP

@ Automatic Detectian

(" hanual Canfiguration

ID CODE: |

e

|_|F_I

Ea

Device Name |

[Resetafter Connect

[w Cache Memory

dd | Delet | Update | IR len:
T e | NN IEEERN | RS IS il
7 5
—Debug
—Connect & Reset Options —Cache Options —Download Options
Connect |Norma| LI Reset: |Autodetect LI [v Cache Code [Verify Code Download

[~ Download to Flash

o |

Annuler

Appliguer

e ——————————————————————

3

DocID030181 Rev 2

35/99

Connecting to the board AN4989

Figure 23. Keil® hotplug step3

m Options for Target '"MyProject’ ﬁ

Device] Target] Output] Listing] User] C,‘CH—] Asm] Linkerl Debug Utilities]
Configure Flash Menu Command

(@ Use Target Driver for Flash Programming [¥" Use Debug Driver

— Use Debug Driver — Settings (r Update Target before Debugging]
nitFile: J Edit..

(" Use External Tool for Flash Programming

Command:| J

Arguments:|

-

Configure Image File Processing (FCARM):
Output File: Add Output File to Group:
| Drivers/CMSIS |

Image Files Root Folder: | [Generate Listing

OK | Cancs% | Defaults | Help

36/99

With these options disabled, the debugger starts, and the target hardware stops at the
current location of the program counter. This allows to analyze the memory and register
content.

Because Options For Target - Debug - Load Application at startup is disabled, the debugger
does not have any application program and debug information. To load this information into
the debugger, use the LOAD debugger command with the option NORESET or
INCREMENTAL.

LOAD can be automated using an Initialization File under Options For Target - Debug.

To go further, refer to http://www.keil.com/.

3

DoclD030181 Rev 2

AN4989 Connecting to the board

4.2.4 SW4STM32

Since version V2.0.0 of SW4STM32, reset and connection modes can be changed through
the Generator Options GUI in Debug Configuration -> Debugger Pane by clicking on the
Show generator options as presented in Figure 24 and Figure 25.

Figure 24. Access to Generator Options in SW4STM32 V2.0.0

& Debug Configurations g

Create, manage, and run configurations ﬁ_

= m L
ui.EAx‘E::P'

Name: F4_Test Debug

Main | %% Debugger . & Startup} L Sourcew =) Common]
GDB Setup

type filter text

4 & Acb STM32 Debugging
© F103_scratch.elf
& F4_NoCube Debug GDB Command:

& F4 Test Debug ${openstm32_compiler_pathP\arm-none-eabi-gdb

& STM32F103RB_Nucleo.elf
[€] C/C++ Application OpenOCD Setup
[€] C/C++ Attach to Application OpenOCD Command:

[€] C/C++ Postmortem Debugger -
"${openstm32_openocd_path}\openocd.exe” Browse... | Variables...
[€] C/C++ Remote Application

[£] GDB Hardware Debugging
= Launch Group

OpenQOCD Options :

Port number: 3333

Configuration Script

@ Automated Generation| () User Defined [Show generator options...)

Script File: ${ProjDirPath}\F4_Test Debug.cfg Browse...
Filter matched 11 of 19 items Revert Apply
® Debug] [Close

3

DocID030181 Rev 2 37/99

Connecting to the board

AN4989

Figure 25. Select Generator Options Reset Mode in SW4STM32 V2.0.0

£ Debug Configurations

=)

IRX| B
type filter text

4 & Ach STM32 Debugging

& F103_scratch.elf

& F4_NoCube Debug

& F4_Test Debug

& STM32F103RB_Nucleo.elf
[£1 C/C++ Application
[&] C/C++ Attach to Application
[&] C/C++ Pastmortem Debugger
C/C++ Remote Application
GDB Hardware Debugging
¥ Launch Group

Filter matched 11 of 19 items

=3
)

Create, manage, and run configurations

MName: F4_Test Debug

[Main | %% Debugger . & Startup| %~ Source| & Common

GDB Setup
GDB Command:

${openstm32_compiler_path}\arm-none-eabi-gdb

OpenOCD Setup
OpenOCD Command:

"${openstm32_openocd_path}\openocd.exe”
OpenOCD Options :

Port number: 3333

Configuration Script
(@ Automated Generation (*) User Defined
Script File: ${ProjDirPath}\F4_Test Debug.cfg

Generator Options

Connection Setup
Interface: [SWD ']
Frequency: [4 MHz ']

&

Browse... | | Variables...

Browse. ariables...

B

Hide generator options...

Browse...

Mode Setup

Reset Mode: | Connect under reset x

Connect under reset
Enable de Hardware reset
SEpTEs Software system reset

Revert Apply

I Debug] I Close]

The Mode Setup group allows to set up the Reset Mode along with other debug behaviors.
. Reset Mode as Connect under reset: asserts hardware reset and then connects to the

target (under reset).

e Reset Mode as Hardware reset: performs a hardware reset and then connects to the

target.

e Reset Mode as Software system reset: does not perform any hardware reset but
connects to the target and performs a software system reset.

In case of problem to connect to the board with SW4STM32, make sure that NRST from
ST-LINK is properly connected to STM32 NRST.

Hotplug mode is not proposed by SW4STM32. ST-LINK utility can be used instead.

38/99

DoclD030181 Rev 2

3

AN4989

Connecting to the board

4.2.5

Note:

3

ST-LINK utility

Reset and Connection modes can be selected in the Settings Pane according to their

description in Section 4.2.1 on page 31.

Figure 26. Connection and reset mode in ST-Link utility

r

Settings

==

ST-LINK
Serial Murnber

0668FFEEE251887067012653

V] [Fefresh]

Firmweare Version W2 J2EhA14
STM3Z Target Infarmation

Target
Target Yoltage 33

Connection settings

ST IZF 307 - BB 30 Ex-b-28/F 31 Socx

Fort
'. JTAG 6. WD Frequency - 4,0 MHz
Access Port
Access Port0 -
kMode

[Normal v] Enahle debug in Low power mode

Generate Trace LOG File

Hot Plug
Fie Connect Under Reset
’Soﬁware System Reset -
b
Log File

’ Open Containing Folder

ok ||

Cancel l

In Keil® MDK-ARM pVISION, IAR™ EWARM and

ST-LINK utility, in case NRST is not

connected on the board or PCB a silent fallback operates with a System Reset. In case of
failure to take control of a board despite the use of Connection UnderReset / Hardware,

check the NRST connection on the board.

DoclD030181 Rev 2

39/99

Connecting to the board AN4989

4.3

Caution:

40/99

Low-power case

By default, the debug connection is lost if the application puts the MCU in Sleep, Stop, or
Standby mode while the debug features are used. This is due to the fact that the Cortex®-M
core is not clocked in any of these modes.

However, the setting of dedicated configuration bits in the DBGMCU_CR register allows
software debug even when the low-power modes are used extensively.

Refer to the PWR and DBG sections of the reference manual for details.

Appendix A: Managing DBGMCU registers on page 78 guides the user through the various
means to manage DBGMCU depending on IDE and needs.

In order to reduce power consumption, some applications turn all GPIOs to analog input
mode, including SWD GPIOs. This is the case for all PWR examples provided in
STM32Cube (debug connection is lost after SystemPower_Config () which sets all
GPIOs in Analog Input State).

Enabling low-power debug degrades power consumption performance by keeping some
clocks enabled and by preventing to optimize GPIO state. Even if this is useful for functional
debugging, it has anyhow to be banned as soon as the target is to measure/enhance power
consumption.

All DBGMCU registers values are kept while reset. Users must pay attention not to let
debug or unwanted states when returning to normal execution (refer to Section 9: From
debug to release on page 76).

3

DoclD030181 Rev 2

AN4989

Breaking and stepping into code

5

5.1

5.2

3

Breaking and stepping into code

This chapter provides users with highlights about a few points affecting system behavior at
code break.

Debug support for timers, RTC, watchdog, BxCAN and 12C

During a breakpoint, it is necessary to choose how the counter of timers, RTC and
watchdog should behave:

e They can continue to count inside a breakpoint. This is usually required when a PWM is
controlling a motor, for example.

e They can stop counting inside a breakpoint. This is required for watchdog purposes.

For the BXCAN, the user can choose to block the update of the receive register during a
breakpoint.

For the I2C, the user can choose to block the SMBUS timeout during a breakpoint.

Those options are accessible in DBGMCU freeze registers (DBGMCU_APB1FZR1,
DBGMCU_APB1FZR2) which can be written by the debugger under system reset.

If the debugger host does not support these features, it is still possible to write these
registers by software.

Refer to Appendix A: Managing DBGMCU registers on page 78 to find suitable ways to
handle debug options depending on IDEs and needs.

Debug performance

To save flashing time and improve debugger reactivity when stepping, make sure that the
higher SWD frequency possible is used with the probe.

When using ST-LINK utility, IAR™ EWARM, or Keil® MDK-ARM pVISION speed is set at
1.8 MHz by default. On system with a core clock greater than 1 MHz, it is safe to use the
highest 4 MHz SWD speed.

DocID030181 Rev 2 41/99

Breaking and stepping into code

ANA4989

5.2.1

IAR™ EWARM

Figure 27. IAR™ EWARM ST-LINK SWD Speed setting

-

Options for node "Project”

|

Factory Settings

Category
General Options
Static Analysis
Runtime Chacking Setup | Communication | Breakpoints
C/C++ Compiler Emulator
Assembler
Output Converter ST-LINKv2 Serial no:
Custom Buid [] Atways prompt for probe selection
Build Actions
Linker Reset
Debugger -
Simuator | System (defaull) v
CADIL
CMSIS DAP Interface y———, Access Port
GDEB Server . Interface speed
Tet/TTAGet QJTAG
IinkfI-Trace 4.0MHz
1 Stellaris
PE micro 1.8MHz
350k
Third-Party Driver 480kHz
TI MSP-FET ?gi:i
TLXDS 100kHz
50kHz
25kHz [ok
15kHz

J

Cancel]

—Mf

42/99

DocID030181 Rev 2

3

AN4989

Breaking and stepping into code

5.2.2

Keil® MDK-ARM pVISION

Figure 28. Keil® SWD Speed Setting

-

Cortex-M Target Driver Setup

D

ebug | Tracel Flash Download |
—Debug Adapter

Serial Number:
| 0668FF565251887067012659

HW Wersion: |V2—1
FW Version: |V2J25M14

Port: ISW 'I

Unit: |ST-LINK/V2-1 -]

—3W Device
IDCODE Device Name bdove
SWDIO | 0x2BA01477 ARM CoreSight SW-DP Up |
Dot |

@& Automatic Detection ID CODE: I

¢ Manual Configuration Device Mame: I

~

Max Clock: |4MH2 vl

Y Add | Delete | Update | Rlen |

—Deblg———1.8MHz

Cdnnect & Reseg50kHz
480kHz
240kHz
[¥| Resetafter {126KkHz

Cpnnect |undg

Cache Options

spt IAutcdetect A l v Cache Code

¥ Cache Memary

Download Options

[~ Verify Code Download
[~ Download to Flash

100kHz

50kHz
25kHz
15kHz
SkHz

o |

Annuler Appliguer

3

DocID030181 Rev 2

43/99

Breaking and stepping into code

ANA4989

5.2.3 SW4STM32

Since version V2.0.0 of SW4STM32, the ST-LINK speed setting can be changed through
the OpenOCD Generator Options GUI in Debug Configuration -> Debugger Pane by
clicking on the Show generator options as presented in Figure 29.

Figure 29. Access to Generator Options in SW4STM32 V2.0.0

£ Debug Configurations

Create, manage, and run configurations

EER Rl R

type filter text

4 Ac6 STM32 Debugging

& F103_scratch.elf

& F4_NoCube Debug

& F4_Test Debug

& STM32F103RB_Nucleo.elf
[€] C/C++ Application
[E] C/C++ Attach to Application
[E] C/C++ Postmortem Debugger
[E] C/C++ Remote Application
[€] GDB Hardware Debugging
B Launch Group

Filter matched 11 of 19 items

)

Name: F4_Test Debug

[El Main %3 Debugger . Startup| % Source|] Common
GDB Setup

GDB Command:

${openstm32_compiler_path}\arm-none-eabi-gdb

OpenOCD Setup
OpenOCD Command:

"${openstm32_openocd_path\openocd.exe”

OpenOCD Options :

Port number: 3333

Configuration Script

(7 User Defined [Show generator options... J

Script File: ${ProjDirPath}\F4_Test Debug.cfg Browse...

Revert Apply

’ Debug] ’ Close

)

The ST-LINK connection
shown in Figure 30.

44/99

mode and speed are available in the Connection Setup Group as

DoclD030181 Rev 2

3

AN4989 Breaking and stepping into code

Figure 30. Generator Options Connection Setup in SW4STM32 V2.0.0

& Debug Configurations

Create, manage, and run configurations

— =
X0~ Name: F4_Test Debug

type filter text
4 Acb STM32 Debugging
& F103_scratch.elf
© F4_NoCube Debug EDH CamnE!
& F4_Test Debug ${openstm32_compiler_pathj\arm-none-eabi-gdb
& STM32F103RB_Nucleo.elf
[E] ¢/C++ Application OpenOCD Setup
[€] C/C++ Attach to Application OpenOCD Command:
[E] C¢/C++ Postmortem Debugger

"${openstm32_openocd_pathf\openocd.exe” Brows: ariables...
[E] C/C++ Remote Application
[c] GDB Hardware Deb.]gging OpenOCD Options : -

B Launch Group N

[Main|%% Debugger . ¥ Startup| &~ Source| =] Common
GDB Setup

Port number: 3333

Configuration Script

@ Automated Generation () User Defined Hide generator options...

Script File: ${ProjDirPath}\F4_Test Debug.cfg Browse...

Generator Options

Connection Setup Mode Setup
Interface: [SWD | | ResetMode:
Frequency: [4 MHz 'l

Enable debug in low power modes

Stop watchdog counters when halt

Filter matched 11 of 19 items Revert Apply
@ [Debug] [Close l

The Connection Setup group allows to specify the debug probe communication channel and
clock speed.

Note: SWD communication is always possible on all ST boards whereas JTAG is only present on
EVAL boards.

SWD communication is always present on all Cortex®-M devices whereas JTAG is not
present on Cortex®-M0(+) devices. Refer to A%Eendix D on page 97 for a complete
overview of debug capabilities for each Cortex™-M type.

3

DoclD030181 Rev 2 45/99

Breaking and stepping into code AN4989

5.3

5.3.1

46/99

Secure platform limitation

The STMicroelectronics platform provides the following code protection means.
RDP: ReadOut Protection

Prevents Flash Memory access through the JTAG for ALL Flash memory.
PcROP: Proprietary Code ReadOut Protection

Prevents read access of configurable Flash memory areas performed by the CPU execution
of malicious third-party code (Trojan Horse).

WRP: Prevents accidental or malicious write/erase operations.

For further details please refer to the reference manual or section Training L4 on
STMicroelectronics website www.st.com.

The next sections provide additional details on the expected behavior of the secure
applications.

RDP

e Level 0: No Protection.
This is the factory default mode allowing all accesses.
e Level 1: Read Protection.

Any access to Flash or protection extension region generates a system hard-fault
which blocks all code execution until the next power-on reset. A simple reset does re-
enable code execution; power must be switched off and on so that power-on reset
enables code execution. The restriction depends on the STM32 Series as described in
Table 4.

3

DoclD030181 Rev 2

http://www.st.com

AN4989

Breaking and stepping into code

5.3.2

3

Table 4. STM32 Series RDP protection extension

Product RDP protection extension
FO + backup registers
F2 + backup SRAM
F3 + backup registers
F4 + backup SRAM
LO + EEPROM
L1 + EEPROM
La + backup registers

+ SRAM2
F7 + backup SRAM
H7 + backup SRAM

Thus, any attempt to load, or connect to, an application running from Flash crashes.
It is still possible to load, execute and debug an application in SRAM.
Option Bytes management can be done with ST-LINK utility or with an application

running from SRAM.

Going back to RDP Level 0 completely erases the Flash.

e Level 2: No Debug.

JTAG/SWD connexion is killed. There is no way back. In this case, nobody - even
STMicroelectronics - can perform any analysis of defective parts.

PCROP

Proprietary Code ReadOut Protection is the ability to define secure area in Flash where user

can locate a proprietary code.

This prevents malicious software or debugger from reading sensitive code.

In case an application with third party code in PCROP area needs to be debugged, the
following points must be considered:

e Step-into PCROP function is tolerated but ignored (Step-over)

e Access to protected memory through debugger trigs Flash Interruption (Instrument
NMIHandler) and return default pattern for the whole area

For further details refer to section Memory Protection in the reference manual of the device.

DocID030181 Rev 2 47/99

Exception handling

AN4989

6

6.1

48/99

Exception handling

It is usually helpful, or even mandatory in complex project, to properly trap and find root
cause of software exception like HardFault and NMI. This chapter intends to make the user
aware of a few techniques used to help investigating such issue.

In order to get deeper into the subject, the user can usefully refer to Joseh Yiu’s work and
book collection The Definitive Guide to ARM-Cortex-M, and to Carmelo Noviello’s recent on-
line guide Mastering STM32.

Default weak Handlers

By default Handlers are implemented as __ weak functions which perform endless loops:

__vector_table

DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD

DCD

sfe (CSTACK)
Reset_Handler
NMI Handler

HardFault_ Handler

o o o o o o

SVC_Handler

0

0
PendSV_Handler

SysTick_Handler

~e

~e

~e

7

7

Reset Handler
NMI Handler
Hard Fault Handler
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
SVCall Handler
Reserved
Reserved
PendSV Handler

SysTick Handler

Nothing is trigged on debugger side and application looks hanged / stuck.

In that case, code break is needed and the PC must be at the address of the Handler.

Some IDEs provide the faulty calling code through Call stack window. (Keil® MDK-ARM
pVision, SW4STM32).

If it is not the case, display registers and find the faulty code address in SP + 0x18

In SW4STM32 all weak default handlers point to the same DefaultHandler which can be

confusing.

A more efficient approach is to trap the exception by instrumenting Handlers.

DoclD030181 Rev 2

3

AN4989

Exception handling

6.2

Custom Handlers

One way to generate templates of Handler functions is to use STM32CubeMX.

In Configuration -> NVIC Configuration -> Code Generation, use Generate IRQ handler
tick boxes as shown in Figure 31.

Figure 31. Asking for Handler code generation

% NVIC Configuration ﬁ

7 nvic| & Code generation |

Enabled interrupt table [] select for init sequence ord... [l Generate IRQ ha...
Non maskable Interrupt v -
Hard fault interrupt []

System service call via SWI instruction

Pendable request for system service

Time base: System tick timer v

3

When Non maskable interrupt and Hard fault interrupt are selected, the following code is
generated:

void NMI_Handler (void)
{
/* USER CODE BEGIN NonMaskableInt_IRQn 0 */

/* USER CODE END NonMaskableInt_ IRQn 0 */
/* USER CODE BEGIN NonMaskableInt_IRQn 1 */

/* USER CODE END NonMaskableInt_ IRQn 1 */

/**

* @brief This function handles Hard fault interrupt.
*/

void HardFault_Handler (void)

{
/* USER CODE BEGIN HardFault_IRQn 0 */

/* USER CODE END HardFault_IRQn 0 */
while (1)

{

}

/* USER CODE BEGIN HardFault_IRQn 1 */

/* USER CODE END HardFault_IRQn 1 */

DocID030181 Rev 2 49/99

Exception handling AN4989

Caution:

50/99

This simple declaration overriding the default weak function,removes ambiguity and clarifies
the call stack.

In order to trap the exception, a hardware or a software breakpoint can be set in the IDE or
directly programmed in the source code using ARM® instruction BKPT.

BKPT is not tolerated if no debugger is connected (refer to Chapter 9: From debug to
release on page 76). it is advised to set it under #1ifdef statement.
In-line insertion of assembly instruction in application C code depends on the IDE.
e |AR™ and SW4STM32

void NMI_Handler (void)

{

#ifdef DEBUG

asm ("BKPT 0");

#endif

}
o Keil®

void NMI_Handler (void)

{

#ifdef DEBUG

asm

{
BKPT 0

}
#endif

}

For each IDE, it is also possible to use the abstraction function defined in the CMSIS library
and provided in STM32Cube software pack.

void NMI_Handler (void)
{

#ifdef DEBUG
__BKPT(0) ;

#endif

}

In all cases, the Halt Debug-Mode is entered; it allows to investigate the issue by inspecting
Call Stack and Registers content.

Tip: On Keil® MDK-ARM MVISION, the caller code is not directly accessible in the Call
Stack Window. Right clicking "Show Caller Code" as in Figure 32 leads to the
faulty line.

3

DoclD030181 Rev 2

AN4989

Exception handling

Figure 32. Keil® Access to Show Caller Code in Contextual menu

Call Stack + Locals &)
Name Location/Value Type
¥ HardFault H-==*- S e C"'(‘j"""”“ 2 void f()
3 ow Laller Lode 1 izt
=% main S int f0)
o Show Callee Code T
toto auto - un...
* Dn ¥ | Hexadecimal Display auto - un...
g;leaH Stack + Locals |4§;' -ace Exceptions g; ent Counters

6.3

6.3.1

3

Trapping div/0 exception

Most often, code execution causing a division by zero are difficult to investigate:
¢ Nothing is neither triggered nor trapped.

e Erroneous returned value generates an unexpected and unpredictable behavior that is
very difficult to analyze.

This chapter gives several tips in order to properly trap div/0 exceptions.

Cortex®-M0/M0+ case

For targets that do not support hardware division instructions (SDIV/UDIV), integer division-
by-zero errors can be trapped and identified by means of the appropriate C library helper
functions:

__aeabi_idivO0()

When integer division by zero is detected, a branch to __aeabi_1idiv0 () is made. A
breakpoint placed on __aeabi_idiv0() allow to trap the division by zero.

To ease the breakpoint application, override the default function:
void __ _aeabi_idivO0 ()
{
#ifdef DEBUG
__BKPT(0) ;
#endif
}

This way, and depending on IDE, the call stack or registers can be examined and the
offending line in the source code can be rapidly found.

To go further refer to section 7.7 of ARM® Compiler Software Development Guide.

DocID030181 Rev 2 51/99

Exception handling

AN4989

6.3.2 Cortex®-M3/4/7 case
For targets that support hardware division instructions, Trapping of DIVO operation is
possible by configuring System Control Block (SCB) registers, accessible through CMSIS
library.
For example on Cortex®-M3:
SCB_CCR register description is provided in Figure 33.
Figure 33. Cortex®-M3 SCB_CCR Description
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 [H]
UN user | NON
A?_ISKN NMIGN £ ‘“':r'g;'— ME,E;D EEEAE
Refer to STM32F 10xxx/20xxx/21xxx/L1xxxx Cortex-M3 programming manual (PM0056).
Setting bit 5 of SCB_CCR register
SCB->CCR |= 0x10; // enable div-by-0 trap
When Div0 occurs it is trapped in HardFault_Handler.
With breakpoint on while instruction into HardFault_Handler, CallStack point to the offended
line and SCB->CFSR register explicits the type of fault
SCB_CFSR register description is provided in Figure 34.
Figure 34. Cortex-M3 SCB_CFSR Description
31 1615 8 7 0
. Bus Fault Status Memory Management
Usage Fault Staius Register Register Fault Status Register
L I\ A)
UFSR BFSR MMFSR
31 30 28 28 27 26 25 24 23 22 21 20 19 18 17 16
DIVBY | UNALI INV [UNDEF
ZERO | GNED NOCE | INVPC STATE | INSTR
rc_wi rc_wi rc_wi rc_wil rc_wl rc_wl
15 14 13 12 11 10 7 6 5 4 3
s 5T | MPRE C s s M ACC | I1ACC
g ST || "G erect | teus |t US| | 5nce | tace
nw m w w v w w w w v n

52/99

The following sections describe the management of SCB registers as a function of the

selected IDE.

DoclD030181 Rev 2

3

AN4989

Exception handling

IAR™ EWARM

Detailed R/W access to the values of each SCB registers bits at runtime can be obtained
through View -> Register -> System Control Block (from Pick List) as shown in Figure 35.

Figure 35. IAR™ exception handling

ﬁ Project - IAR Embedded Workbench IDE - ARM 7.60.2

DS L@ &4 B@ |

Eile Edit View Project Debug Disassembly ST-Link Tools Window Help

B B | ob ob

o2 LED 2 X
S
Workspace x | Call Stack. x

Fio3 Frame

[}
Files @ HardFault_Hendler
EleFios-Fros [~ <Exception frans>
-8 3 Application
Ha CaDrivers [_call_main + 0m9]

L@ ouput

Fi03 i v

1

System Control Block - | dindregister -

SM3ZFIx_it.c main.c x| B
54 static void MX_GEIO_Init{void): [=|
55
_ AFSR -~ 0x00000000
S6 /* USER CODS BEGTN PFP +/ iincR ENISFi0E0300
G+ Frivate runction FBFAR - D=EDDDEDFS
€3 ADDRESS = 0=ED0DEDF8
59 /* USER CODE END PFP */ FCCR = 0=00000010
= LICFSR = 0=02000000
61 /* USER CODE BEGIN 0 +/ F 1accvror =0
62 | pacc¥IOL =0
63 s+ USER CODE END 0 #/ |- MUNSTKERR - 0
64 |- MSTKERR -0
65 int main(void) [~ HLSPERR =0
660 1 | HHARYALID - 0
s | IBUSERR =0
68 /* USER CODE BEGIN 1 #/ [PRECISERR = 0
5 S kY
'r‘ﬂ /{ enable div-by-0 I STKERR -0
" / _| |} LsPERR -0
2 =| |- BFaR¥ALID - 0
73 /+ MCU Conf: . | UNDEFINSTR = 0
2 |- INVSTATE =0
75 /* Reset of all peripherals, Initiali the Flash interfas: INYPC =10
76 EAL Init(); |- Wocp -0
77 |- UNALIGHED - 0
78 /* Configure the system clock */
79 SystenClock Config{l; CPACR = 0=00000000
80 DFSR - 0z0000000E
a1 ured Is HFSR - 0x40000000
= VECTTBL =0
e FORCED -1
0 DEBUGEVT =0
as | s . ICSR - 0=00000803
e VECTACTIVE - 0003
oe RETTOBASE = 1
1 VECTPENDING = 0z000
88 /* USER CODE END 2 */ ISRPENDING = 0
B ISRPREEHPT = (
20 loop */ PENDSTCLR = 0
E USER CODE BEGIN WHILE +/ PENDSTSET = 0
22 vhile (1) PENDSVCLR = 0
93] PENDSVSET - 0
34 FMIPENDSET = 0
95 CPUID = 0x411FC231
o as ID_PFRO = 0xD00D0030
s ID_FFRL = 0=00000200
e ID_DFRO = 0z00100000
&) ID_AFRO = 0x00000000
o [ID_HHFRO - 0xD00D0030
o, L B ID_HHFR1 = 0x00000000
* [ID_HHFR2 = 0z00000000
i ID_HHFR3 = 0200000000
103] /#+ Systen Closk Configuration ID_ISAR0 - 0x01141110
104 & 5/ ID_ISARL = 0x02111000
105 wvoid SystemClock Cenfig(veid) ID_ISAR2 = 0=21112231
0601 4 ID_ISAR3 = 0=01111110
fo= ID_ISAR4 - 0x01310102

ID_ISaRS5 - 000000000
HHFAR 0xE000EDFS

ADDRESS 0=E000EDFS
SCR 0x00000000

VYTOR
SHPR1

008000000
0=00000000
SHPR2 0=00000000
SHPR3 0=00000000
[HSHCSR = 0=z00000000

3

DoclD030181 Rev 2

53/99

Exception handling

AN4989

54/99

Keil® MDK-ARM pVISION

SCB->CCR can be managed at run time through View -> System Viewer -> Core
Peripheral -> System Control and Configure.

Refer to Figure 36 for details.

Figure 36. Keil® System Control and Configure

System Ctrl / Cfg ﬁ
—System Control

SCB-=5SCR: I[lﬁl:l:l:l:lzl:l[]l

[SLEEPONEXIT
[~ SLEEPDEEP
[SEVOMPEMND

Ir'—li::::nnﬁguraﬂu::r1 Control
SCB->CCR: |0x00000210

[~ NONBASETHRDENA
[~ USERSETMPEND
[T UNALIGN_TRP

[v DIV_O_TRP

[~ BFHFNMIGN

DocID030181 Rev 2

3

AN4989

Exception handling

The fault type can be investigated using Peripherals -> Core Peripherals -> Fault Reports

as shown in Figure 37.

Figure 37. Keil® Fault Reports

Fault Reports

2

Memory Manage Faults

Address SCB->MMFAR: |0xEQ00EDFS

Status SCB->CFSR: [0x00 (MMFSR)
[IACCVIOL [MUNSTKERR
[DACCVIOL [MSTKERR
[MMARVALID
Bus Faults

Address SCB->BFAR: |0xEQDOEDFS
Status SCB->CFSR:[(BFSR)
[IBUSERR [UNSTKERR
[PRECISERR [STKERR
[IMPRECISERR [BFARVALID

Usage Faults

Status SCB-»CFSR: |0x0200 (UFSR)

[UNDEFINSTR [NOCP
[INVSTATE NALIGNED

[INVPC [v DIVBYZERO
Hard Faults
Staws ~ SCB->HFSR: [0x40000000
[VECTTBL [DEBUGEVT
[+ FORCED

Debug Faults

Status SCB->DFSR: |0x00000001
[+ HALTED [VCATCH
[~ BKPT [EXTERNAL
[DWTTRAP

Auxiliary Faults

Status: SCB->AFSR: |(x00000000

3

DoclD030181 Rev 2

55/99

Exception handling

AN4989

SW4STM32

At runtime, while debug is in break state, the SCB register can be accessed in read mode or
in write mode through: Expression Pane -> Add new expression as shown in Figure 38.

Figure 38. SW4STM32 SCB register access

)= Variables % Breakpoints ¢ Expressions 2 iiif Registers #% [/O Re

Expression
¢9= uwTick
9= SystemCoreCloc
4 » SCB
9= CPUID
9= ICSR
)= VTOR
9= AIRCR
9= SCR
)= CCR
» (# SHP
)= SHCSR
9= CFSR
9= HFSR
)= DFSR
9= MMFAR
)= BFAR
)= AFSR
» (# PFR
)= DFR
)= ADR
» (= MMFR
. (= ISAR
» (= RESERVEDO
)= CPACR
5 Add new expressi

*

Type

volatile uint32_t
uint32_t

SCB_Type *

const volatile uint...
volatile uint32_t
volatile uint32_t
volatile uint32_t
volatile uint32_t
volatile uint32_t
volatile uint8_t [12]
volatile uint32_t
volatile uint32_t
volatile uint32_t
volatile uint32_t
volatile uint32_t
volatile uint32_t
volatile uint32_t
const volatile uint...
const volatile uint...
const volatile uint...
const volatile uint...
const volatile uint...
uint32_t [3]
volatile uint32_t

Value

0

80000000
Oxe000ed00
1091551809
67172355
0x8000000 (Hex)
4194632448

0

0x210 (Hex)
Oxe000edl8

0

0x2000000 (Hex)
1073741824

11

3758157304
3758157304

0

Oxe000ed40 (Hex)
1048576

0

Oxe000ed>0
Oxe000edel
Oxe000ed74
15728640

56/99

DoclD030181 Rev 2

3

AN4989

Exception handling

3

Independently from the IDE, for projects including the CMSIS library, the content of the
registers in the code can also be printed:

void HardFault_Handler (void)
{

volatile uint32_t csfr= SCB-> CSFR ; // load into wvariable
printf ("SCB-> CSFR 0x%08x \n", SCB-> CSFR) // print
while (1)

{
}
}

The same content can as well be obtained directly from the memory with any memory
browser.

Other faults like UNALIGNED, UNDEFINSTR can be managed in a similar way.

For more details, refer to the relevant programming manual:
o STM32F10xxx/20xxx/21xxx/L 1xxxx Cortex®-M3 programming manual (PM0056)

e STM32F3, STM32F4 and STM32L4 Series Cortex®-M4 programming manual
(PM0214)

e STMB32F7 Series Cortex®-M7 processor programming manual (PM0253)

Relevant information is also available on partners websites:
e https://www.iar.com
e http://www.keil.com

DocID030181 Rev 2 57/99

Printf debugging AN4989

7

Printf debugging

Printf debugging is one of the most straight-forward and used solution in order to start
investigating a non-working system.

This chapter is a getting started guide to quickly setup a printf data path through
semihosting, USART or SWO, benefiting from facilities offered by STMicroelectronics
hardware kits and ecosystem tools.

71 STM32 Virtual-COM port driver
STM32 Virtual-COM Port Driver (VCP) is a feature supported by ST-LINKV2-B embedded in
most of recent hardware kits (refer to Section 2.1: Hardware development tools on page 9).
It is a RS232 emulation through ST-LINK USB connection.
On the PC side, this requires driver software package (STSW-STM32102) included in ST-
LINK driver (STSW-0009).
Once the target is connected, it is seen as a serial port on the PC. An example is presented
in Figure 39.
Figure 39. Virtual-COM port on Windows® PC
=4 Device Manager =Nl X
File Action View Help
= | @ HE =
4 .¥ Network adapters -

%

4 7T Ports (COM & LPT)

------ '_-'." Bluetooth Device (Personal Area Network)

------ '_-'." Bluetooth Device (RFCOMM Protocol TDI)

------ '-‘:'; Cisco AnyConnect Secure Mobility Client Virtual Miniport Adapter for Windows x64
------ '_-'." Intel(R) 82579LM Gigabit Network Connection

------ '_-'." Intel(R) Centrino(R) Advanced-N 6205

------ '_:." Microsoft Virtual WiFi Miniport Adapter

| Portable Devices

1

»

> D Praocessors

> 4P Security Devices

> 7 Sensors

% Sound. video and aame controllers

58/99

3

DoclD030181 Rev 2

AN4989 Printf debugging

7.2 Printf via UART

Direct connection from PC UART to board pinout does not work due to signal level
incompatibility.

Take care to use external adapter (such as MAX232, ST3241EB, FTDI USB/UART) or the
USART connected to Virtual-COM port.

Trick: Appendix B: Use Nucleo “cutted” ST-LINK as stand-alone VCP on page 89
explains how to use ST-LINK Nucleo stand-alone part as VCP.

The straight-forward way to set a Serial Com port with PC host is to use the USART

connected to VCP.

USART connected to VCP depends on the hardware kit:

e Nucleo-32/Nucleo-64: USARTZ2 - PA2/PA3

e Nucleo-144: USARTS3 - PA9/PA10

e Discovery: not standard. Refer to the board schematics

e EVAL: not standard. Refer to the board schematics. Either the VCP or the RS232
connector can be used

In STM32CubeMX, for Nucleo board, the VCP USART pins (PA2/PA3) are reserved by
default, but required to be enabled by selecting “asynchronous” in USART mode selection
box as shown in Figure 40.

Figure 40. USART Pinout configuration with STM32CubeMX

B o TIM3 pci
H- ¢ TIM4
- © USARTI
£ % USART2
----- Mode :Asynchronous v:
“Hardware Flow Control (R5232) iDisabIe vi
% USART3
i@ use USART_TX |
- & WWDG

a1

c
L
*
=l
3
=
s

[pa uzaun]

Then, set the UART communication settings in Configuration -> USART2 Configuration
-> Parameter Settings as shown in Figure 41.

DocID030181 Rev 2 59/99

3

Printf debugging

Figure 41. USART2 setting with STM32CubeMX
File' Project Window Help
ReRER 60 +-:09 ¢
F'mou‘sl Clock Configuration| Configuration | Fower Consumption Calculator
[configuration
[-MiddleWares
H 4 ﬁ FATFS
o [[] user-defined
- % FREERTOS
] i [C] Enabled
EI--Per'lpherals (" . Iy
g g . USART? Configuration L S
| L[] Activated |/ Parameter Settings}| /7 User Constants | o/ NVIC Settings | «/ DMA Settings | «/ GPIO Settings|
wWD6 Configure the below parameters :
- [] Activated). ;
e Search :| Search (Crti+F) v &
Timebase Source:Sys Baud Rate 115200 Bits/s
USART2 ‘Word Length 8 Bits (including Parity)
- Mode:Asynchronous Parity None
= * WWDG Stop Bits 1
[] Activated (= Advanced Parameters
Data Direction Receive and Transmit
Over Sampling 16 Samples
] 1 | »
Restore Default Apply] [0k] [Cancel

60/99

Retargeting printf to UART depends on the toolchain.
For IAR™ EWARM and Keil® MDK-ARM pVISION this is done by overriding the stdio fputc
function

#include "stdio.h"

int fputc(int ch, FILE *f)
{

HAL_UART Transmit (&UartHandle, (uint8_t *)&ch, 1, OxXFFFF);

return ch;

}

For GCC based toolset like SW4STM32, two cases can be met.
With syscall.c integrated to the project:

#include "stdio.h"

int __ io_putchar (int ch)
{

DocID030181 Rev 2

3

AN4989 Printf debugging
HAL_UART_ Transmit (&UartHandle, (uint8_t *)&ch, 1, OXFFFF);
return ch;
}
Without syscall.c integrated, a customized _write function has to be defined:
int _write(int file, char *ptr, int len)
{
int DataIdx;
for (DataIdx = 0; DatalIdx < len; DatalIdx++){ __io_putchar(*ptr++);}
return len;
}
Refer to STM32Cube provided example UART_Printf () available for almost all STM32
Series. An example is available in STM32Cube_FW_F3 V1.7.0\Projects\
STM32F303ZE-Nucleo\Examples\UART\UART_Printf.
Caution: USART word length includes parity which is not the case for most of UART terminal. Word
length 8 with parity require 7 bits + parity on terminal side to match.
VCP does not support Word length of 7 bits and below (whatever the parity). Table 5 gives
examples of compatible configurations:
Table 5. STM32 USART vs. PC terminal WordLength example
STM32 UART PC Terminal
Word Length: 8, Parity: Odd Data: 7, Parity: Odd
Word Length: 8, Parity: None Data: 8, Parity: None
Word Length: 9, Parity: Odd Data 8, Parity: Odd
Word Length: 7, Parity: Odd/None Not Working with VCP
7.3 Printf via SWO/SWV

3

Serial Wire Output (SWO) is single pin, asynchronous serial communication channel
available on Cortex-M3/M4/M7 and supported by the main debugger probes.

It is using the ITM (instrumentation trace macrocell) module of the Cortex Core-Sight.

The asynchronous mode (SWO) requires 1 extra pin and is available on all packages for
STM32 based on Cortex-M3, -M4, and -M7.

It is only available if a Serial Wire mode is used. It is not available in JTAG mode.

By default, this pin is NOT assigned. It can be assigned by setting the TRACE_IOEN and
TRACE_MODE bits in the Debug MCU configuration register (DBGMCU_CR). This
configuration has to be done by the debugger host.

Refer to the related chapter of STMicroelectronics reference manual.

In debug context it can be a good alternative to UART in system where pinout constraints
are strong (alternate function preempting UART GPIOs).

DocID030181 Rev 2 61/99

Printf debugging

AN4989

It has to be used in combination with a Serial Wire Viewer (SWV) on host side which
provides the following features:

e PC (Program Counter) sampling

e Event counters that show CPU cycle statistics

e Exception and Interrupt execution with timing statistics

e Trace data - data reads and writes used for timing analysis
e |TM trace information used for simple printf-style debugging

This chapter only addresses the printf-style debugging feature.

In order host debugger can manage flexible pin assignment ensure SWO pin is not used for

other purpose.
In STM32CubeMX:

Select "Trace Asynchronous Sw" in SYS -> Debug selection box as shown in Figure 42.

Figure 42. SWO Pin configuration with STM32CubeMX

&

sSLMML1
SPI1
SPI12
SPI3
SWPMI1

& 5YS

Debug 'Trace Asynchronous Sw

|| System Wake-Up 1
[7] System Wake-Up 2

SYS_JTDO-SWO

62/99

This secures that the PB3 is not allocated to another use. No specific code is generated.
Other init steps are performed by the SWV integrated in the IDE or in the ST-LINK utility.

DocID030181 Rev 2

3

AN4989

Printf debugging

IAR™ EWARM

IAR™ EWARM provides an integrated access to SWO.

Redirection of printf and scanf is possible using Library Configuration options as shown in

Figure 43.

Figure 43. Semihosting/SWO configuration with IAR™

-

Options for node "Debug_RTC_F3Nucleo”

=X=)

Category:

General Options -

Static Analysis

Runtime Checking
C/C++ Compiler
Aszembler

Output Converter Library:

Targetl Qutput | Library Configuration LibraryOptionslMISRA—C:Zﬂ'ﬂdr MISH 4 |+

Description:

Custom Build [Full

v] Use the full configuration of the C/C++ runtime library.

Build Actions
Linker

Full locale interface, C locale, file descriptor support,
multibytes in printf and scanf, and hex floats in strtod.

Debugger

Simulator Caonfiguration file:

Angel $TOOLKIT_DIR$\INC\c\DLib_Config_Fullh
CMSIS DAP

GDB Server

m

D Enable thread supportin library

IAR ROM-monitor
IHet/ITAGIet
J-Link/J-Trace

TI Stellaris

Library low-level interface implementation
") None
(@) Semihosted
|AR breakpoint

stdout/stderr

@) Via SWO

Macraigor

PE micro

'Z_:_.'Via semihosting

CMSIS

[¥]Use CMSIS
[[]DsP library

RDI

ST-LINK
Third-Party Driver
TI MSP-FET

[

(8]:9] ’ Cancel

————————————————————————

3

Care must be taken that clock setup is correct by using ST-LINK -> Communication Pane

as illustrated in Figure 44.

DocID030181 Rev 2

63/99

Printf debugging

AN4989

Figure 44. IAR™ SWO Clock setting

Options for node "Project”

|

Category:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
CADI
CMSIS DAP
GDB Server
I-jet/ITAGjet
Jinkf1-Trace
TI Stellaris
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS

- Communication Breakpoints

Factary Settings

Clock setup

CPUclock: 2 MHz

SWOclock []Auto
2000 kHz

["]Log communication

$PROJ_DIR$\cspycomm.log

|| cancet |

Once configured, IAR™ properly sets TRACE_IOEN and TRACE_MODE and configures

the related GPIO.

SWO printf occurrences are visible in Terminal 1/0 windows.

Port Stimulus 0 is used by printf and scanf. It is not configurable.

64/99

Keil® MDK-ARM MUVISION:
In MDK-ARM it is required to redirect printf to SWO by some piece of code following same
model as for UART (Refer to Section 7.2: Printf via UART on page 59)

#include "stdio.h"

int fputc(int ch, FILE *f)
{
ITM_SendChar (ch) ;
return(ch) ;

}

Keil® must be properly configured for the SWO communication to be properly set. An
example is given in Figure 45.

In Projet Option -> Debug -> Probe Settings -> Trace Pane:

1. Tick Trace Enable

2. Enter correct Core Clock

3. Enable ITM Stimulus Port 0

3

DoclD030181 Rev 2

AN4989 Printf debugging

Figure 45. SWO Configuration with Keil®

Options for Target 'STM32F103RB_Nucleo’ P
Devicel Targetl Output] Listing] User l C,‘CH] Asm l Linkerl Debug IUtiIitiesl
" Use Simulator with restrictions Settings e Use: |ST-LinI-c Debugger ﬂ

[Limit Speed to Real-Time

Cortex-M Target Driver Setup - S —— S .

Debugl Trace IFIash Download]

[Core Clock: 64.000000 MHz [v Trace Enable]

Trace Port Timestamps Trace Events
|Seria|‘v"."ire Qutput- UART/NRZ J [+ Enable Prescaler |1 = [CPI: Cycles per Instruction
[EXC: Exception overhead
SWO Clock Prescaler: 32 PC Sampling
¥ Autodetect [~ SLEEP: Sleep Cycles
v Autodetec - *
Prescaler. [1024716 = [LSLk Load Store Unit Cycles
SWO Clock: 2.000000 MHz [~ Periodic Period:| <Disabled> [~ FOLD: Folded Instructions
| on Data R/W Sample [+ EXCTRC: Exception Tracing

ITM Stimulus Ports

3 Port 24 23 Port 16 15 Port 8 7 Port 0
Enable: [0:00000001 [~ [T)
Privilege: |0x00000000 Port31.24 [Port23.16 [Port15.8 [Port7.0 |

Advanced settings
[Ignore packets with no SYNC
[Overwrite CYCCNT

b 0K | Annuler

SWV viewer is called "Debug (printf) Viewer" and is accessible while in debug through

View -> Serial Windows -> Debug (prinf) Viewer as shown in Figure 46.

Figure 46. Access to SWV in Keil®

Memory WINndows P

Serial Windows P =} UART #1
Analysis Windows P | 5} UART #2
Trace P | =} UART #3
System Viewer r

=Z¢ Debug (printf) "u"isfl.‘ver
#+ Toolbox Window ol

¥ | Periodic Window Update

3

DocID030181 Rev 2 65/99

Printf debugging AN4989

SW4STM32 (and all GCC based toolset)

With syscall.c integrated to the project:
#include "stdio.h"
int _ io_putchar (int ch)
{
ITM_SendChar (ch) ;
return(ch) ;

}

Without syscall, add:
int _write(int file, char *ptr, int len)
{
int DataIdx;
for (DataIdx = 0; DataIdx < len; DataIdx++)
{
__io_putchar (*ptr++) ;
}

return len;

3

66/99 DocID030181 Rev 2

AN4989 Printf debugging
ST-LINK utility
In case the IDE does not have embedded SWYV, the one provided by ST-LINK Utilities can
be used instead. Figure 47 shows the use of SWV in ST-LINK Utilities.
Figure 47. SWV in ST-LINK utility
(8, STM32 ST-LINK Utility B |
File Edit View Target [ST-LINK| External Loader Help
B E w @ ,\9 H Firmware update
Printf via SWQ viewer
Memory display Device STM32F301x4-x6-x8/F302x4-x6-x8/F318x¢
Device ID 0x439
Address: x08000000 w Size: 0x1000 Data Width: 32 bits Revision ID Rev 7
Device Memary | Binary :IE Serial Wire Viewer I — é‘m] LiveUpdate
|Dewce Memory
Settings |
System clock 64000000 Stimulus 0 hd
SWV Frequency: 2000 KHz | ITM Stimulus port: 0 | Status: Running | Printf data number: 350
SWO Printf Loop 37 -
SWO Printf Loop 38
SWO Printf Loop 39
SWO Printf Loop 40
SWO Printf Loop 41
SWO Printf Loop 42
SWO Printf Loop 43
H H - SWU Freguern Clear
30 + Connection mi —— —— ——
117 @ Debug in LowW.
117 : Device ID:0x439
: Device flash Size : 64KBytes
:17 : Device family :STM32F301x4-x6-x8/F3024-x6-x8/F318x00
: SWV Reception started.
: SWV Reception stopped. |
: SWV Reception started. =
:01 : SWV Reception stobped
Refer to STM32 ST-LINK utility software description user manual (UM0892) for details.
Tip: Keil® MDK-ARM MVISION and ST-LINK utility SWV allows to select the Stimulus
to display. On the other hand it is quite straight forward to make some clone of
ITM SendChar () function using any of the 31 stimulus port. Can be useful in a
very verbose system to set a trace library which split trace between stimulus
based on their importance (info, debug, error) or there source.
7.4 Semihosting

3

Semihosting is a mechanism that enables code running on an ARM® target to communicate
and use the Input/Output facilities on a host computer that is running a debugger.

Examples of these facilities include keyboard input, screen output, and disk 1/0. For
example, this mechanism can be used to enable functions in the C library, such as

DocID030181 Rev 2 67/99

Printf debugging AN4989

printf () and scanf (). It can also allow to use the screen and keyboard of the host
instead of having a screen and keyboard on the target system.

This is useful because development hardware often does not have all the input and output
facilities of the final system. Semihosting enables the host computer to provide these
facilities.

However, the user has to be aware of the following drawbacks:

e Semihosting only works during a debug session. Otherwise, the program gets stuck in
the first print £ () routine reached.

e Since semihosting uses breakpoint instruction and host dependent code, it has
significant and unpredictable impact on performance.

Semihosting depends on the library provided by the IDE. The next sections present how to
set semihosting using the three main IDEs covered in this application note.

7.41 IAR™ EWARM
IAR™ EWARM provides a highly integrated semihosting feature, enabled by default.
Figure 48 shows how to check if it is the case for the project in Options -> General options
-> Library Configuration Pane.
Figure 48. Semihosting configuration in IAR™
Options for node "F103" £
Category:
-
Static Analysis
Runtime Checking Target | Output | Library Configuration | Library Options | MISRA-C:2004 | Misi ¢ | *
C/C++ Compiler
Assembler Library: Description:
Output Converter lFuII v] Use the full configuration of the C/C++ runtime library.
Custom Build Full !ocale limerface. Clocale. file descriptorlsupport.
Build Actions multibytes in printf and scanf, and hex floats in striod.
Linker
Debugger
Simuator = $TOOLKIT_DIR$\INC\c\DLib_Config_Fullh
Anael
CMSIS DAP ["|Enable thread supportin library
GDB Server Library low-level interface implementation CMSIS
IAR ROM-monitor =
[JMNone stdout/stderr
Let/ITAGIet i _ - L Use CMSIS
] @ Semihosted 1@ Via semihosting)
IHinkf1-Trace - [|DSPlibrary
T1 stellaris IAR breakpoint [)Via SWO
Macraigor
PE micro
RDI I
ST-LINK
Third-Party Driver
TI MSPFET S [n]:4 l [Cancel l

68/99

DocID030181 Rev 2 ‘Yl

AN4989 Printf debugging
In such a case, simply use printf () / scanf () functions in the code.
Input and output of the program are displayed in the Terminal I/0O window.
7.4.2 Keil® MDK-ARM MVISION
Keil® has no semihosting capability.
7.4.3 SW4STM32
From OpenSTM32 IDE version 1.12.0 and upper, a tutorial to set semihosting is accessible
in the local SW4STM32 installation as shown in Figure 49. Follow Help -> Help Content ->
SystemWorkbench for STM32 User Guide.
Figure 49. Semihosting procedure in SW4STM32
£ Help - Eclipse =B X
Search: Scope: All topics
Contents @-lw-elkklo oo g o & O

@ Workbench User Guide

@ Autotools Plug-in User Guide

@ C/C++ Development User Guide

@ C/C++ Library Documentation

@ Changelog Editor User Guide

@ Eclipse Marketplace User Guide

@ EGit Documentation

@ GCov User Guide

@ GDB Tracepoint Analysis User Guide
@ GNU Tools On-line Documentation
=@ GProf User Guide

@ Libhover Developer's Guide

@ Mylyn Documentation

@ Oomph P2 Management Documentation
@ Oomph Setup Documentation

@ Profiling Framework User Guide

= @ RSE User Guide

@ Specfile Editor User Guide

@ Stand-alone Debugger User Guide

@ Subversive User Guide

> SystemWorkbench for STM32 User Guide

@ Trace Compass Developer Guide

@ Trace Compass User Guide

@ Valarind User Guide)
& = A

+ Build the application from the standard Eclipse bulld mechanism
- « Debug the application by using the dedicated perspective
» Some advanced advices, useful tips

Project Creation
= Creation Wizard

= Custom Boards
+ Firmwares

- Firmware installation preferences setup
« Firmware installation
Project Import

= Import Wizard for STM32CubeMX generated projects

Build configuration

+ Build configurations
= Compiler and linker options

m

Debug an application

= Debug Configuration
= Launch the debug
+ Debug Views

Advanced

+ Optimization level
+ Semihosting

- SWO Traces
- CCM Settings

Tips and tricks

- Configure network connections
+ Update site mechanism

« Automatic project importer
- Preferences
+ Known errors

o~

m

The local STM32 plugins versions are obtained through Help -> About Eclipse as shown in

Figure 50 and in Figure 51.

3

DoclD030181 Rev 2

69/99

Printf debugging AN4989
Figure 50. Getting SW4STM32 reference version (1/2)
[Heip] [@ About Ectipse L) i
P | — - —— - e 1
[| o Welcome ’ Ecligse IDE fod CAC++ Dievelopers =

(1) Help Contents Version Mars.d Refease (25.0)
= Search Budld i: 2016071E-0600

mmmlc Help b Copymight Eclipee contnbwtors and othaers J000, J036. AN s

= - Fights hedesrved Eclipse and the Bchpie Bo0 afe trademarks of

Key Assist.. Ctrl+Shift+L the Eclipse Foundation, Inc, Hitps/fwewecipseccg . The

1|F'5 and Tricks_ Eclipse logo cannot be afiered without Eclipse’s permission
= Bclipse I0Q0s & pRovided for use undey the Eclipse logo and
= REW—.‘ BIJ!Q or Enhancement... Trademark guideline, Mo/ wawsclipie orpiogotm,”. Oracke

Cheat Sheets__ and lava are trademarks or registered trademaris. of Oracle

andjor its alfiliates. Other names mary De trademarnis of Thes

“% Perform Setup Tasks_ respective cwrers. I
e Check for Updates || '-' P - 1 'l" [C '
& Install New Software.. EoolosC I Z NSO
Installation Details
& Eclipse Marketplace... .)
© (About Eclipse e . == o

Figure 51. Getting SW4STM32 reference version (2/2)

£ Eclipse Installation Details

Installed Software | Installation History | Featuresl Plug-ins | Configuration

type filter text

Name
i 4 Mylyn WikiText

i 4§+ Native JavaHL 1.8 Implementation (Optional)
i @ Native JavaHL 1.9 Implementation (Optional)

Version
2.101.v20161129-1925
6.0.0.120160427-1700
6.0.0.120160427-1700

[l RDRA Trnlc

i 4 OpenOCD 1.14.0.201705091103
§* OpenSTM32 Help Documentation 1.2.0.201705091103
| » 4 OpenSTM32 IDE 2.00.201705091103 {_|
i3+ OpenSTM32 Linker Script editor 1.11.1.201705091103 [
i 4§+ OpenSTM32 Remote debugging support 2.0.0.201705091103 1
i 4+ Remote System Explorer End-User Runtime 3.7.2.20160102600047 |

< | 1T

L 2N 2070207 20AN0N

System Workbench for STM32 - C/C++ Embedded Development Tools for MCU

Update...

H Uninstall... H Properties]

70/99

DocID030181 Rev 2

AN4989

Debug through hardware exploration

8

8.1

8.2

8.2.1

3

Debug through hardware exploration

As a complement to software instrumentation, a user facing a non-working system may take
great advantage to monitor STM32 pin states (GPIO or clock among others) with external
tools such as oscilloscopes or logic analyzers.

This chapter presents the possibilities offered by STMicroelectronics hardware kits and
integrates a complete tutorial to setup the microcontroller clock output (MCO)

Easy pinout probing with STMicroelectronics hardware kits

All STMicroelectronics hardware kits presented in Section 2.1.1 on page 9 offers easy
pinout access thanks to their Morpho or Arduino™ connectors.

The coverage of the pinout by the connectors depends on the board itself as well as on the
MCU type. In most cases, a large number of GPIOs are covered.

In order to use this coverage at best, the user is advised to study the board schematics that
show the connections between the MCU pins and the connectors. In association with the
schematics, the board user manual presents the jumper and solder bridge configurations
that modify the routing of pins to connectors.

Microcontroller clock output (MCO)

This feature allows to output one or more internal clock to one or more pins in order to
enable measurement through an external tool, typically an oscilloscope.

It can be useful in debug context in order to check that clock settings is as per expectation
and help to investigate potential error in clock tree initialization code.

Configuration with STM32CubeMX

In STM32CubeMX, MCO stands for master clock output. It is enabled by ticking the Master
Clock Output option in the RCC section as shown in Figure 52.

Figure 52. MCO pin selection in STM32CubeMX

F * OPAMP2

B-® RCC
----- High Speed Clock (HSE) :Disahle v:
----- Low Speed Clock (LSE) :Disahle T:

Master Clock Qutput RCC_MCO

- [] Audio Clock Tnput (125_CKIN)
i o RTC
- €3 SPI2

|

This allocates a pin labeled RCC_MCO.

DoclD030181 Rev 2 71/99

Debug through hardware exploration AN4989

This is typically pin PA8 for all STM32 families.

For Nucleo kits, the PA8 pin is accessible on the D7 pin of the Arduino™ connector.

For other board pin configuration, please refer to the board schematics.

Depending on board or and chip families, other pins can be used if needed and available.
The Ctrl + click on RCC_MCO pin command sequence under STM32CubeMX highlights in
blue the alternate pin. An example is shown in Figure 53.

Figure 53. MCO alternate pin highlight exemple with L073

RCC_MCO

STM32CubeMX Clock Configuration pane selects the signal to route to pin and the divider
as presented in Figure 54.

72/99 DocID030181 Rev 2

3

AN4989

Debug through hardware exploration

8.2.2

Caution:

3

Figure 54. MCO Multiplexer in STM32CubeMX Clock Configuration Pane

MCO source Mux

e HSI

(7 |-
LSE
HSE

(MHz) MCO 2 -
(MHz) (44 32 -« [- PLLOLK

P

LS1

) |-
SYSCLK

The divider allows to output a signal frequency compatible with output capabilities.

HAL_RCC_MCOConfig

Independantly of the fact that STM32CubeMX is used or not, MCO configuration is done
using the hal_rcc or LL function:

stm32XXxx_hal_rcc.c/ stm32XXxx_hal_rcc.h
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t
RCC_MCODiv)

Examples based on LL drivers are available in STM32Cube libraries (refer to
STM32CubeProjectList.html) which configure the GPIO and the related registers depending
on source and divider.

They also configure the selected GPIO accordingly:

/* Configure the MCOl pin in alternate function mode */
GPIO_InitStruct.Pin = MCOl_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
HAL_GPIO_Init (MCO1_GPIO_PORT, &GPIO_InitStruct);

The setting of GPIO speed (OSPEED) must be carefully set.

OSPEED setting and maximum output frequency value are described in the datasheet of
the related MCU in chapter I/O port characteristics.

Max Frequency values are given for a typical load of 50 pF or 10 pF.

If the measure is performed with an oscilloscope, the load of the probe circuitry must be
taken into account.

DoclD030181 Rev 2 73/99

Debug through hardware exploration AN4989

8.2.3

Note:

74/99

If the frequency of the signal under observation exceeds the GPIO capability (e.g. 216 MHz
Sysclock on F7 while GPIO maximum frequency is 100 MHz), use a divider to produce a
suitable signal.

The default value in RCC HAL function is the highest (which is good).

In case of a STM32CubeMX generated project, be aware that default value applied in
generated MX_GPIO_init () function (executed after MCO config) is the lowest.

In case the output clock is higher than 1 MHz, it is recommended to change this.

A too low OSPEED setting can be suspected in case no signal or very noisy/flatten signal
(small amplitude).

A too high setting can be suspected if a signal with a long and high amplitude dumping
oscillation is observed (overshoot / undershoot).

STM32 Series differences

STM32L4 Series also provides an LSCO (Low Speed Clock Output) on PA2 in order to
output LSE or LSI, same as MCO, but with benefit to be still available during stop and
standby mode.

Refer to section 6.2.15 Clock-out capability of STMicroelectronics reference manual
STM32L4x5 and STM32L4x6 advanced ARM®-based 32-bit MCUs (RM035) for details.

HAL Function to call is:
void HAL_RCCEx_EnableLSCO (uint32_t LSCOSource)

in stm32l4xx_hal_rcc_ex.c/.h

LSCO is conflicting with UART2 TX (PA2). On Nucleo-64 board, the use of the LSCO board
use and the use of the ST-LINK VCP are mutually exclusive.

SB63 must be set in order to get the LSCO signal available on Morpho and Arduino™
connectors.

Refer to the board user manual for details.

STM32F4 and STM32F7 Series devices provide two different MCO outputs given choice of
four clocks each as shown in Figure 55. Refer also to Appendix D: Cortex®-M debug
capabilities reminder on page 97.

3

DoclD030181 Rev 2

AN4989 Debug through hardware exploration

Figure 55. STM32F4/F7 dual MCO capabilities
MCO1 source Mux

LSE
-

HSE
-

(MHz) MCO1l e 16 -+ [1 - . HEI
PLLCLE
| +———

MCOZ source Mux

i SYSCLK
@) f——
PLLIZSR

(MHz) MCOZ [l 16 - [1 v - HSE
-
PLLOLK
L oaf—

3

DoclD030181 Rev 2 75/99

From debug to release AN4989

9

76/99

From debug to release

It is important to have in mind that most of technics presented in this AN and suitable for
debugging have to be properly cleaned to prevent problem while releasing the application.

The following action list can be used as a checklist helping to avoid the most common
problems:

Remove software BKPT instructions or take care to let them inside #ifdef DEBUG
statements.

Ensure printf () uses available data path on final product.
Semihosting and SWO cause hardfault otherwise.

Reestablish Code Optimization level.
Implement proper Fault Handlers.
Reset DBGMCU registers to default.

3

DoclD030181 Rev 2

AN4989

Troubleshooting

10 Troubleshooting

Table 6 summarizes solutions to overcome some of the most frequent issues faced during

debug setting and operation.

Table 6. Troubleshooting

Problem

Solution

Connection with target lost during debug of low-power
system

Ensure debug in low-power in DBGMCU register is
enabled.

Ensure SWD pin not set in analog state.

Refer to Section 4.1: SWD/JTAG pinout and to
Section 4.3: Low-power case.

Fail to get printf via SWO

Refer to Section 7.3: Printf via SWO/SWV.

An unexpected power consumption is measured for a
low-power application.

Check that low-power debug in DBGMCU register is
OFF. Beware that this register is reset only with a POR
(power-on reset).

Refer to Section 4.3.

Fail to connect to a board with Normal/System Reset

Try ConnectUnderReset / Hardware Reset connection
mode. This resets SWD connection in case it has been
disabled by application.

Refer to Section 4.2.

Fail to connect on board using
ConnectUnderReset/Hardware using ST-LINK

Ensure NRST of ST-LINK is properly connected to MCU
NRST (e.g. check SB12 for Nucleo).

Fail to see clock signal on MCO output

Ensure that the clock configured to MCO is in the
supported range of the GPIO and that the OSPEED
setting is correct.

Refer to Section 8.2.

Impossible to evaluate a value or a variable, or
impossible to set a breakpoint at a specific line in code

Compiler optimization is probably enabled. Remove it.
Refer to Chapter 3: Compiling for debug.

3

DoclD030181 Rev 2

77/99

Managing DBGMCU registers AN4989

Appendix A Managing DBGMCU registers

This appendix provides a tutorial for the different ways to Read/Write the DBGMCU
registers with various tools and IDEs.

A1 By the ST-LINK utility

DBMCU registers states are preserved in case of reset. (hard or soft).
This allow to set this register thanks to ST-LINK utility independently from the IDE as in
Figure 56.

Figure 56. ST-LINK utility Enable Low-Power debug option

[Settings {i—hf

ST-LIMNE
Serial Number

DBEBFFEEE251887067012653 vl [Fefresh]

Firrrearare Version W2 J2hhA14

STM32 Target Infarmation

STIZFI0Txdxb-xB/F302x4-xb-x8/F31 8¢
Target

Target Yoltage 33 -

Connection settings

Part
©JTAG @ SwWD Frequency - 4.0 bhiHz
Access Port
Access Port0 -
kode

Connect Under Reset v][Enable debug in Low power mode]

Feset Mode
Hardware Reset -
Log File
Generate Trace LOG File [Dpen Cantaining Folder
(0]] [Cancel]

.

ST-LINK provides a tick box allowing to set all the three bits of DBMCU_CR register at once:
DBG_STANDBY, DBG_STOP, and DBG_SLEEP

78/99 DocID030181 Rev 2 ‘Yl

AN4989

Managing DBGMCU registers

A.2

3

By software

HAL and LL provide functions to set/reset DBGMCU registers.

Refer to STM32Cube\Repository\STM32Cube_FW_[MCU]
_[Version]\Drivers\STM32[MCU]xx_HAL_Driver\ STM32[MCU]xx_User_Manual.chm

Figure 57 and Figure 58 show the positions of the DBGMCU registers iwithin the LL and
HAL libraries.

Figure 57. DBMCU Register LL Library Functions

®e2s | T/
= () SYSTEM

@ SYSTEM Private Constants

@ SYSTEM Exported Constants R
= | SYSTEM Exported Functions
@& SYSCFG .
= (3 DBGMCU -
= I Functions
[E] LL_DBGMCU_ABP1_GRP1_FreezePeriph sl
£ LL_DBGMCU_ABP1_GRP1_UnFreezePeriph Refer

@ LL_DBGMCU_ABP2_GRP1_FreezePeriph i
B LL_OBGMCU_ABPZ_GRP1_UnFreezePeriph
@ LL_DBEGMCU_DisableDEGSleepMode Retur
@ LL_OBGMCU_DisableDBEGStandbyMode
[£] LL_DBGMCU_DisableDEGStopMode

[£] LL_DBGMCU_EnableDBGSleepMode Definitio
@ LL_DBGMCU_EnableDBEGStandbyMode
£ LL_DBGMCU_EnableDBEGStopMode

[£] LL_DBGMCU_GetDevicelD __STA
[£] LL_DBGMCU_GetRevisionlD
@ FLASH Get Wak

ol T

DocID030181 Rev 2 79/99

Managing DBGMCU registers AN4989
Figure 58. DBGMCU_CR HAL Library Functions
= I Madules Returr
= 3 STM32L0x¢_HAL_Driver
= ([HAL -
21 HAL Private || | Pennitio
@ HAL Exported Constants
= [Ill HAL Exported Macros
@ Defines =t FY
= 0 HAL Exported Functions
@ Initialization and de-initialization functions Get Star
= @ PenpherglConholﬁmchons Refere
= Cﬂl Functions ¢
[HAL_DBGMCU_DBG_DisableLowPowerCaonfig
[HAL_DBGMCU_DBG_EnablelowPowerConfig Returr
[HAL_DBGMCU_DisableDEGS|eepMode
[E] HAL_DBGMCU_DisableDBGStandbyMode
B HAL_DBGMCU_DisableDBGStopMode Definitio
] HAL_DBGMCU_EnableDEGSleepMode
5 HAL_DBGMCU_EnableDBGStandbyMode
[E] HAL_DBGMCU_EnableDBGStopMode __ STAl
[E] HAL_Delay
E] HAL_GetDEVID Indicate

A3

80/99

[£] HAL_GetHalVersion

For MO Cortex based families (LO/FO) DBGMCU module need to be clocked by setting bit 22
of register RCC_APB2ENR (refer to the corresponding reference manual) prior to be

written.

RCC->APB2ENR |= RCC_APB2ENR_DBGMCUEN;;

Some HAL macros are also available to Enable/Disable this clock.

__HAL_RCC_DBGMCU_CLK_ENABLE() ;
HAL_DBGMCU_EnableDBGStopMode () ;
HAL_DBGMCU_EnableDBGStandbyMode () ;
HAL_DBGMCU_EnableDBGSleepMode () ;

__HAL_RCC_DBGMCU_CLK_DISABLE() ;

By debugger

In order to avoid debugging specific lines in the source code, there are several possibilities

to set DBGMCU registers through debugger interfaces or scripts.

DoclD030181 Rev 2

3

AN4989

Managing DBGMCU registers

3

IAR™ EWARM

Read/Write of DBGMCU registers is possible through the register window as shown in

Figure 59:

Figure 59. Access to DBGMCU register with IAR™

Register

DBG

v| hACL

IDCODE
CICR
— DBG_SLEEP

DBG_STOP
DBG_STAHNDBY
TRACE TOEN
TRACE HODE
DBG_IVDG STOP
DBG_WVDG_STOP
DBG_TIK1_STOP
DBG_TIHZ2_ STOP
DBG_TIH3_STOP
DBG_TIH4_ STOP
DBG_CAN1_STOP

DBG_I2C1_SHBUS _TIMEOUT
DBG_I2C2_ SHBUS TIMEOUT

DBG_TIHS_STOP
DBG_TIHS_STOP
DBG_TIHe_ STOP
DBG_TIH?_STOP
DBG_CANZ STOP

]
[

|
Lo s Y e Y e R e e s Y s Y e Y e e I e R s Y o Y e O o I e

0=20036410
Ox00000100

In case a more permanent setup is required EWARM C-SPY® debugger macros enable to
define execUserSetup (), which is executed at debugger start prior to program execution.

Figure 60 shows the Project Option Debugger -> Setup Pane.

DoclD030181 Rev 2

81/99

Managing DBGMCU registers AN4989

Note:

82/99

Figure 60. EWARM C-SPY® Macro script setting

F N
Options for node "Praoject” ﬁ

Categary: Factory Settings

General Options
Static Analysis

Runtime Chedking Setup | Download | Images | Extra Options | Multicore | Plugins|
C/C++ Compiler

»

Assembler Driver Runto

Output Converter [ST-UNK v] .
Custom Build main

Build Actions Setup macros
Linker [¥]Use macro file(s)
Debugger
$PRO.J_DIR\My_DBGMCU_Setup_Macro.mac

Simulator

Angel

CMSIS DAP

GDB Server

IAR ROM-monitor
Iet/TTAGIet ["] override default

MHink/}-Trace $TOOLKIT_DIR$\CONFIG\debuggenST\STM32L073RZ.ddf
TI Stellaris

) @)

Device description file

Macraigor

PE micro

RDI

ST-LINK
Third-Party Driver
TI MSPFET 7 [QK.] I Cancel]

e ———————————————

A basic sample code of execUserSetup () function used to enable low-power debug on
LO is provided below:

execUserSetup () {/* Write a message to the debug log */
__message "LO DBGMCU Setup IAR Macro \n";

__writeMemory32 (0x00400000, 0x40021034, "Memory"); // Enable clock DBG
__writeMemory32 (0x00000007, 0x40015804, "Memory"); // Enable low-power
Debug in DBG_CR

_ _writeMemory32 (0x00000001, 0x40015808, "Memory"); // DBG_APBl_FZ Timer2

Stop Enable

}

For further information about feature offer by C-SPY® macros please refer to C-SPY®
Debugging Guide available in IAR Help Menu and on www.iar.com.

IAR™ enables Low-Power debug by default if connected with I-jet™ or cmis-dap compliant
probes.

DocID030181 Rev 2

3

AN4989

Managing DBGMCU registers

3

Keil® MDK-ARM pVision

At runtime, access to the DBGMCU register is possible through View -> System Viewer ->

DBG.

Figure 61. Accessing DBGMCU register in Keil® MDK-ARM pVision (1/2)

E C\Users\gallieno\workspace\F103\MDK-ARI

File Edit [View] Project Flash Debug Perig

| = || ¥ | Status Bar

| B
Registers

Register
R4

R5

R6

R7

R8

R9

R10:

R11

R12

R13

R14

R15
+-xPS
=~ Bankeg
MSE

PSF

= System
BAS

PRIl

FAL

COR

= Internal
Moc

Priv

Stac

Stat

el @E gXoEs =&

sy
v

Toolbars

Project Window

Books Window
Functions Window
Templates Window
Source Browser Window
Build Output Window
Error List Window

Find In Files Window

Command Window
Disassembly Window
Symbols Window
Registers Window
Call Stack Window
Watch Windows
Memory Windows
Serial Windows
Analysis Windows
Trace

System Viewer

Toolbox Window

Periodic Window Update

v v vy vy v v

Core Peripherals

ADC
AFIO
BKP
CAN
CRC
DAC
DBG
DMA
EXTI
FLASH
FSMC
GPIO
12C
wWDG
NVIC
PWR
RCC
RTC
SDIO
SPI
TIM
USART
USB
WWDG

4
»

Sec

Command

109.29573710

= Registers

|I_oad "F103\\F103.axf"

DoclD030181 Rev 2

83/99

Managing DBGMCU registers AN4989

84/99

Figure 62. Accessing DBGMCU register in Keil® MDK-ARM pVision (2/2))

DBG a
v]
Property Value
= IDCODE 0x20036410
=-CR 000000300
DBG_SLEEP [
DBG_STOP [

DBG_STANDBY |

TRACEIOEN [

TRACE MODE 0x00
DBG_IWDG_STOP [v

DBG_WWDG_ST...|
DBG_TIM1_STOP
DBG_TIM2 STOP
DBG_TIM3_STOP
DBG._TIM4 STOP
DBG_CANL_STOP [
DBG_I2C1 SMB.. [
DBG_I2C2 SMB... [
DBG_TIM8_STOP |
DBG_TIM5_STOP [
DBG_TIM6_STOP [
DBG_TIM7_STOP [
DBG_CAN2 STOP [

e s

Each bit in the register can be set or reset independently.
For a permanent debug configuration, use Keil® MDK-ARM pVision initialization file
capability.

Debugger script files are plain text files that contain debugger commands. These files are
not created by the tools. The user must create them to suit his specific needs. Typically, they
are used to configure the debugger or to setup or initialize something prior to running the
program.

Figure 63 shows initialization script setting in Project option ->Debug Pane.

3

DocID030181 Rev 2

AN4989 Managing DBGMCU registers

Figure 63. Keil® Initialization script setting

ﬂ Options for Target 'STM32L073RZ_NUCLECQ' P4

Device] Targetl Outputl Listingl User] C,’CH] Asm l Linker Debug lUthitiesl

(" Use Simulator with restrictions Settings ® Use: |ST-Link Debugger ﬂ Settings
[Limit Speed to Real-Time
[+ Load Application at Stariup [+ Runto main() [+ Load Application at Startup [v" Runto main()
Initialization File: Initialization File:
J [\DGBMCUini J Edit..
Restore Debug Session Settings Restore Debug Session Settings
[+ Breakpoints [v Toolbox [v Breakpoints [v Toolbox

Sample code for Init file setting DBGMCU registers on M0 based MCU (Clock enabling)
FUNC void DBGMCUSetup (void) {

// DBGMCU configuration

_WDWORD (0x40021034, 0x00400000); // Enable clock DBG
_WDWORD (0x40015804, 0x00000007); // DBG_CR

_WDWORD (0x40015808, 0x00000001); // DBG_APBl_FZ

}
DBGMCUSetup () ;

For further information regarding Keil® MDK-ARM pVision initialization script, refer to
http://www.keil.com.

3

DoclD030181 Rev 2 85/99

Managing DBGMCU registers AN4989

SW4STM32

By default, SW4STM32 performs the following configuration of DBGMCU:
e Enable Low-Power debug
e Freeze IWDG and WWDG while halt.

Since version V2.0.0 of SW4STM32, this default setting can be changed through the
OpenOCD Generator Options GUI in Debug Configuration -> Debugger Pane by clicking
on the Show generator options as presented in Figure 64.

Figure 64. Access to Generator Options in SW4STM32 V2.0.0

% Debug Configurations

Create, manage, and run configurations

R, AN=EN Name: F4_Test Debug

type filter text [Main | ## Debugger . & Startup| % Source|] Common

4 & Ac6 STM32 Debugging GDB Setup
& F103_scratch.elf
© F4_NoCube Debug L !
& F4_Test Debug ${openstm32_compiler_path}\arm-none-eabi-gdb
& STM32F103RB_Nucleo.elf
C/C++ Application OpenOCD Setup
C/C++ Attach to Application OpenOCD Command:
C/C++ Postmortem Debugger " N
C/C++ Remote Application ${openstm32_openocd_path}\openocd.exe
GDB Hardware Debugging OpenOCD Options :
= Launch Group

ariables...

Port number: 3333

Configuration Script

0 Automated Generation User Defined (Show generator options...]

Script File: ${ProjDirPath}\F4_Test Debug.cfg Browse...
Filter matched 11 of 19 items Revert Apply
@' I Debug l [Close]

DBGMCU options are available under Reset Mode in the Mode Setup group as shown in
Figure 65.

3

86/99 DocID030181 Rev 2

AN4989 Managing DBGMCU registers

Figure 65. Generator Options debug MCU in SW4STM32 v2.0.0

= Debug Configurations ﬂ

Create, manage, and run configurations ﬁ

CExX B3~

Name: F4_Test Debug
type filter text Main %% Debugger . Startup] & Sourcew i=] Commun]
4 & Ac6 STM32 Debugging GDB Setup
& F103_scratch.elf
© F4_NoCube Debug EBIE) ComEE!
& F4_Test Debug ${openstm32_compiler_path}\arm-none-eabi-gdb
& STM32F103RB_Nucleo.elf
[e] C/C++ Application OpenOCD Setup
[€] C/C++ Attach to Application OpenOCD Command:
[E] C/C++ Postmortem Debugger -
"${openstm32_openocd_path}\openocd.exe” Browse... | [Variables...
[E] C/C++ Remote Application
[€] GDB Hardware Dehjgging OpenOCD Options : -
B Launch Group

Port number: 3333

Configuration Script

(@ Automated Generation () User Defined Hide generator options...

Script File: ${ProjDirPath}\F4 Test Debug.cfg Browse...

Generator Options

Connection Setup Maode Setup
Interface: [SWD vl Reset Mode:
Frequency: [4 MHz Vl

Enable debug in low power modes

Stop watchdog counters when halt

Filter matched 11 of 19 items Revert Apply

@ I

Debug] l Close

If needed, the DBGMCU value can be changed at run time through the 1/0O Registers
window as shown in Figure 66.

3

DocID030181 Rev 2 87/99

Managing DBGMCU registers AN4989

Figure 66. Runtime R/W access to DBGMCU register with SW4STM32

= Variables ®s Breakpoints ©< Expressions i} Registers W I/0 Registers &2 | 5 Signals = Modules = B8
@ Double-click on register to fetch value 55
Register Hex value Binary value Resetval.. Access Address De*
= ADC An
» = CAN Co
. & DAC Dig
4 (= DBG De
4 &% DBG 0xE00420.. De
- it IDCODE 0x000000.. READ-O.. 0xE00420.. DB
a W8 CR 0x00000307 00000000000000000000001100000____... 0x000000.. READ-W.. OxE00420.. DB
DBG_SLEEP [bit 0] Ox1 Ded DB
DBG_STOP [bit 1] Ox1 1 DB
DBG_STANDBY [bit 2] Ox1 1 DB
TRACE_IOEN [bit 5] 0x0 0 TR
TRACE_MODE [bits 7-6] 0x0 00 TR
DBG_IWDG_STOP [bit 8] Ox1 1 DB
DEG_WWDG_STOP [bit 9] Ox1 1 DB
DBG_TIM1_STOP [bit 10] 0x0 0 DB
DBG_TIM2_STOP [bit 11] 0x0 0 DB _
DBG_TIM3_STOP [bit 12] 0x0 0 DB~
DBG_TIM4_STOP [bit 13] 0x0 0 DB
DBG_CAN1_STOP [bit 14] 0x0 0 DB
DBG_12C1_SMBUS_TIMEOUT [bit 15] 0x0 0 DB
DBG_[2C2_SMBUS_TIMEOUT [bit 16] 0x0 0 DB
DBG_TIM8_STOP [bit 17] 0x0 0 DB
DBG_TIM5_STOP [bit 18] 0x0 0 DB
DBG_TIM6_STOP [bit 19] 0x0 0 DB
DBG_TIM7_STOP [bit 20] 0x0 0 DB
DBG_CANZ_STOP [bit 21] 0x0 0 DB
, B CRC R
< | 1 »
Note: All DBGMCU registers values are kept while reset. Pay attention to not let a debug or

unwanted state when returning to normal execution. (refer to Chapter 9: From debug to
release on page 76).

3

88/99 DocID030181 Rev 2

AN4989

Use Nucleo “cutted” ST-LINK as stand-alone VCP

Appendix B Use Nucleo “cutted” ST-LINK as stand-alone

3

VCP

As stated in Section 7.2: Printf via UART on page 59, it is required to have an adapter
between MCU and PC to setup a proper serial connection.

Design constraints may prevent to use the default UART connected to VCP, or may require
another serial connection with the PC.

In such a case, it is simpler and cheaper to use another Nucleo board instead of getting the
appropriate RS232 level shifter.

The "Cuttable PCB" capabilities of the Nucleo-64 and Nucleo-144 boards represent their
capacity to disconnect on-board ST-LINK from STM32 application part.

The simple way to disconnect the ST-LINK part from the MCU application part is to power off
the MCU by removing jumper J5. This is indicated by the fact that LED LD3 is off when a
USB cable is connected. This configuration is presented in As show in Figure 67.

Figure 67. ST-LINK cuttable part of Nucleo

J5 unplugged

LD3 off

In this case the ST-LINK part can be used as a stand-alone module.

1. As debugger interface to program and debug an external application as documented in
the user manual

— STM32 Nucleo-144 board: section 6.3.4 of Using ST-LINK/V2-1 to program and
debug an external STM32 application (UM1974)

— STMB32 Nucleo-64 board: Using ST-LINK/V2-1 to program and debug an external
STM32 application (UM1724)

2. As an alternative and/or additional Virtual-COM port

DocID030181 Rev 2 89/99

Use Nucleo “cutted” ST-LINK as stand-alone VCP AN4989

Any available UART of the STM32 application can be connected to the CN3 connector of
the ST-LINK part.

Figure 68 illustrates a project using NUCLEO-F302R8 is using ST-LINK part of a
NUCLEO-L476RG for connection of UART1 to the host.

UART1 RX PC5 is routed via Morpho Connector CN10 Pin 6 to CN3 TX of
NUCLEO-L476RG ST-LINK.

UART1 TX PC4 is routed via Morpho Connector CN10 Pin 34 to CN3 RX of
NUCLEO-L476RG ST-LINK.

Figure 68. Using ST-LINK stand-alone part of Nucleo-L476RG as VCP

-LATERG

AR

With this setup, on the PC side, two Virtual-COM ports are available with potentially two
different serial channels:

1. Nucleo-F302R8 UART2 (native default VCP) to COM4
2. Nucleo-F302R8 UART1 (VCP through Nucleo-L476RG) to COM8

90/99 DocID030181 Rev 2

3

AN4989

Use Nucleo “cutted” ST-LINK as stand-alone VCP

Note:

3

Figure 69. Virtual-COM port on PC side

Tera Term: New connection ﬁ
(O TCPHIP Host: |localhost -
History
. |22
Service: () Telnet TCpIgunLs
@ SSH SSH version: |SSH2 =
Other
Protocol: |UNSPEC ~
@ Serial Port: [COM1: Communications Port (COM1) v]
COM1: Communications Port (COM1)
COM3
COM4: STMicroelectronics STLink Yirtual COM Port [COMA4)
COMB: STMicroelectronics STLink Virtual COM Port (COMB)

This usage implies to have several targets connected to a single host PC.

In order to properly identify the target and the VCP, refer to Appendix C: Managing various

targets on the same PC.

DocID030181 Rev 2 91/99

Managing various targets on the same PC AN4989

Appendix C Managing various targets on the same PC

This appendix provides hints to identify and control the connection to a specific target
among several ones using ST-LINK probe.

Each ST-LINK connection is identified by a serial number.
In order to correlate a serial number with a board, it is advised to use the ST-LINK utility.
Open the setting pane (Target -> Settings).

At the top of the screen, the serial number pick list contains all connected ST-LINK probes.
By selecting one, access to the target is generated, making blinking of the related ST-LINK
LED switch from red to green.

Figure 70. ST-LINK utility target selection pick list

[Settings ﬁ

ST-LIME.
Serial Number

IDENFF5?485?B4?16?D?3?3? V] Refresh

(67 1FFE74857547 167073
IBREFF565251867067012659 |
FIFFwaEre VErson TIZTTIT

STM3IEZ Target Information

ST IZLAx1 LAxE/LAxE
Target

Target Woltage 32 hd

Connection settings
Part

(OJTAG @ E8WD Frequency | 4,0 MHz

Access Port

Access PortD v
Mode
Connect Undar Reset v] Enable debug in Low power mode
Resetbode
Hardware Reset -
Log File
Generate Trace LOG File l Open Containing Folder
[[0]:4 l ’ Cancel]

Once the target is identified, it is possible to copy the S/N from the console in the clip-board
as shown in Figure 71.

3

92/99 DocID030181 Rev 2

AN4989

Managing various targets on the same PC

Figure 71. Getting target ST-LINK S/N from the console

B8, STM32 ST-LINK Utility

E)

File Edit View Target ST-LINK External Loader Help

=]

Memory display

Address; 0x08000000 w Size: 0x1000 Data Width: 32 bits

bEos @

Device
Device ID
Revision 1D
Flash size

Device Memory @ 0x08000000 : | Binary File|

STM32F3013x4-36-%8/F302x4-36-%8/F31 8xx
%439

Rev Z

G4KBytes

[LiveUpdate

Target memory, Address range: [0x08000000 0x08001000]

Address 0 | 4 | 8 | C | ASCI

[»

0x08000000 | 20000540 |08003BB5 08003BDY 08003BDD @.. up;..U;..¥;..

0x08000010 |08003BE1 08003BE5 08003BE9 00000000 &;..&;..¢€;

< |

1 |

1

(10:26:34 :

ST-LINK SN : DESSFF56525188?06?012659)

10:26:34

10:26:34 :
10:26:34 :
10:26:34 :
10:26:34 :

ST-LINK Firmware version : V2125M14
Connected via SWD.

SWD Frequency = 4,0 MHz.

Connection mode : Connect Under Reset.

: Debug in Low Power mode enabled.
10:26:35 :
10:26:35 :
10:26:35 :

Device ID:0x439
Device flash Size : 64KBytes
Device family :STM32F301x4-x6-x8/F302x4-x6-x8/F31 8¢

<

3

The next sections detail the selection of a specific target with each of the main IDEs

considered in this application note.

IAR™ EWARM

The first time a debug session is launched while several targets are connected, a Debug

Probe Selection window pops up.

A list of connected targets is displayed, identified by the last four bytes of the ST-LINK S/N

as illustrated in Figure 72.

Figure 72. IAR™ Debug Probe Selection pop-up window

-

Debug Probe Selection

Please select one of the following found probe(s)

67012659 [no name] ST-Link/v2-1
67073737 [no name] { ST-Link/v2-1)

s

Edit Mickname

Cancel

It is recommended to use the Edit Nickname feature to ease board identification in

anticipation of further connection as shown in Figure 73.

DocID030181 Rev 2

93/99

Managing various targets on the same PC AN4989

Figure 73. IAR™ Debug Probe Selection with nickname

-

Debug Probe Selection

Please select one of the following found probe(s)

K

67073737 [MUCLED-L476RG] (ST-Link/v2-1)

Cancel

P

Edit Nickname

Important: The pop-up window is displayed only at first time. The selection made is then
applied by default to further connections. Changing this initial selection requires that the
"Debug Probe Selection" display is forced by setting the "Always prompt for probe selection
option in Option -> ST-LINK -> Setup as shown in Figure 74.

Figure 74. Probe selection prompt setting on IAR™

Options for node "Project”

Category: Factory Settings

General Options
Static Analysis

Runtime Checking Setup |Ccmmunication Breakpoims|
C/C++ Compiler

Emulator
Assembler

Output Converter ST-LINK w2 Serial no:

([¥] Atways promptfor probe selection)

Custom Build
Build Actions
Linker
Debugger
Simulator
CADI
CMSIS DAP Interface Access Port

GDB Server ©JTAG Interface speed @) Auto

IHet/TTAGjet i
Iink/1-Trace .j'@'_. SWD (| Specify 0

TI Stellaris

Reset

’Connectduring reset VI

PE micro

ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS

OK] ’ Cancel

3

94/99 DocID030181 Rev 2

AN4989 Managing various targets on the same PC

Keil® MDK-ARM pVision

The list of connected targets is visible in ST-LINK debug pane (Options -> Debug -> ST-
LINK -> Settings -> Debug Pane) as presented in Figure 75.

Figure 75. Keil® ST-LINK selection

r B
Cortex-M Target Driver Setup [ﬁ

Debug] Trace] Flash Download]

Debug Adapter -SW Device

U S T-LINK/V2-1] > IDCODE | Device Name

Serial Number: SWDIO 0x2BA01477 ARM CoreSight SW-DP
J (668FF565251887067012659

|

HW Version: 1\4’2—1 . J
FW Version: W @ Autormatic Detection D CODE ’—

port [sw <] € Manual Configuration evice Name: |

Max Clock: m ‘ Delste ‘ ndate I 1B lar ,‘—

Cebug
-Connect & Reset Options -Cache Options Download Options

Connect]underReset :_J Reset: 1Autodelect :_J [Cache Code [Verify Code Download
[Ftasit Sher Canndct [« Cache Memory [~ Download to Flash

OK | Annuler | ‘

In the Debug Adapter section, the pick list allows to select among all connected targets.

At selection it can be observed a brief activity of the ST-LINK LED of the related board and
the Serial Number is displayed.

The selection is stored for the next connections.
SW4STM32

It is possible to force the connection to a specific target using the ST-LINK S/N. In Debug
Configurations -> Debugger Pane, add the following OpenOCD option:

-c¢ hla_serial [ST-LINK S/N]

Figure 76 illustrates the setting of an OpenOCD option for forcing a connection.

3

DoclD030181 Rev 2 95/99

Managing various targets on the same PC

AN4989

Figure 76. Forcing specific ST-LINK S/N with SW4STM32

-
£ Debug Configurations

Create, manage, and run configurations

HEX e~

Name: F4_Test Debug
type filter text

Main | %% Debugger . & Startup} by Source] =] Common]
4 & Ac6 STM32 Debugging

GDB Setup
& F103_scratch.elf

© F4_NoCube Debug e

& F4_Test Debug

& STM32F103RB Nucleo.elf
71 C/C++ Application OpenOCD Setup

${openstm32_compiler_pathParm-none-eabi-gdb

Browse... | |Variables..

[E] C/C++ Attach to Application
1 C/C++ Postmortem Debugger "${openstm32_openocd_path}\openocd.exe”
[£] C/C++ Remote Application

[£] GDB Hardware Debugging

OpenOCD Command:

&= Launch Group

Port number: 3333

OpenOCD Options: "-c hla_serial| 0673FF575056805087055344"

Configuration Script

(@ Automated Generation () User Defined

»

m

Show generator options...
Script File: ${ProjDirPath}\F4_Test Debug.cfg Browse... B
Filter matched 11 of 19 items | reet [aepy |
@ I Debug] [Close]

96/99

DocID030181 Rev 2

3

AN4989

Cortex®-M debug capabilities reminder

Appendix D Cortex®-M debug capabilities reminder

STM32 families debug capabilities depend on their Cortex®-M type.

Table 7. STM32 Series vs. debug capabilties

s;;':” . | Cortextype | SWD JTAG ETM | SWO b'r"eaar:;‘f;:]‘is ::sr:t mco™
LO/FO MO/0+ Yes No No No 4 No 1
FA/L1/F2 M3 Yes Yes Yes® | Yes 6 Yes 1
F3/F4/L4 M4 Yes Yes Yes® | Yes 6 Yes 2@
F7/H7 M7 Yes Yes Yes® | Yes 8 Yes 2@
1. Microcontroller Clock Output (refer to Section 8.2: Microcontroller clock output (MCO) on page 71)
2. Depends on package size. Check availability in the Pin Allocation Table in the related datasheet.
For more details, refer to the related Cortex® ARM® documentation.
"_l DocID030181 Rev 2 97/99

Revision history

AN4989

Revision history

98/99

Table 8. Document revision history

Date Revision Changes
16-Jun-2017 1 Initial release.
29-Jun-2017 2 Added Table 1: Applicable products.

DoclD030181 Rev 2

3

AN4989

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics — All rights reserved

3

DocID030181 Rev 2 99/99

	Table 1. Applicable products
	1 Foreword
	1.1 Software versions
	1.2 Acronyms

	2 STM32 ecosystem outlines
	Figure 1. STM32 ecosystem overview
	2.1 Hardware development tools
	2.1.1 Hardware kits
	Figure 2. Nucleo-144, Nucleo-64 and Nucleo-32 boards
	Figure 3. Discovery board example
	Figure 4. EVAL board example

	2.1.2 ST-LINK probe
	Figure 5. ST-LINK, ST-LINK/V2, and ST-LINK/V2-ISOL stand-alone probes
	Figure 6. On-board ST-LINK/V2 on Nucleo
	Table 2. ST-LINK software pack

	2.1.3 Alternative debugger probes

	2.2 Software development tools
	Figure 7. STM32 software development tools
	2.2.1 STM32CubeMX
	2.2.2 Partner IDEs
	2.2.3 STMStudio
	2.2.4 ST-LINK utility

	2.3 Embedded software
	Figure 8. STM32CubeProjectList screenshot

	2.4 Information and sharing
	Figure 9. Get connected to STM32 world
	2.4.1 Documentation
	Table 3. STMicroelectronics documentation guide

	2.4.2 ST Community
	2.4.3 STM32 Education

	3 Compiling for debug
	3.1 Optimization
	3.1.1 IAR™ EWARM
	Figure 10. IAR™ EWARM Optimization option

	3.1.2 Keil® MDK-ARM µVision
	Figure 11. Keil® µVision Code Optimization option

	3.1.3 SW4STM32
	Figure 12. SW4STM32 Optimization Level setting

	3.2 Debugging information
	3.2.1 IAR™ EWARM
	Figure 13. IAR™ Generate debug Information option

	3.2.2 Keil®-MDK-ARM µVision
	Figure 14. Keil® Debug Information option

	3.2.3 SW4STM32
	Figure 15. SW4STM32 Debug information option

	4 Connecting to the board
	4.1 SWD/JTAG pinout
	Figure 16. SWD pins PA13 and PA14 in Reset state under STM32CubeMX
	Figure 17. SWD pins PA13 and PA14 in Reserved but inactive state under STM32CubeMX
	Figure 18. SWD pins PA13 and PA14 in Active State under STM32CubeMX

	4.2 Reset and connection mode
	4.2.1 Presentation
	4.2.2 IAR™ EWARM
	Figure 19. Reset Mode in IAR8.10: screenshot

	4.2.3 Keil® MDK-ARM µVISION
	Figure 20. Connect and Reset option Keil®
	Figure 21. Keil® hotplug step1
	Figure 22. Keil® hotplug step2
	Figure 23. Keil® hotplug step3

	4.2.4 SW4STM32
	Figure 24. Access to Generator Options in SW4STM32 V2.0.0
	Figure 25. Select Generator Options Reset Mode in SW4STM32 V2.0.0

	4.2.5 ST-LINK utility
	Figure 26. Connection and reset mode in ST-Link utility

	4.3 Low-power case

	5 Breaking and stepping into code
	5.1 Debug support for timers, RTC, watchdog, BxCAN and I2C
	5.2 Debug performance
	5.2.1 IAR™ EWARM
	Figure 27. IAR™ EWARM ST-LINK SWD Speed setting

	5.2.2 Keil® MDK-ARM µVISION
	Figure 28. Keil® SWD Speed Setting

	5.2.3 SW4STM32
	Figure 29. Access to Generator Options in SW4STM32 V2.0.0
	Figure 30. Generator Options Connection Setup in SW4STM32 V2.0.0

	5.3 Secure platform limitation
	5.3.1 RDP
	Table 4. STM32 Series RDP protection extension

	5.3.2 PCROP

	6 Exception handling
	6.1 Default weak Handlers
	6.2 Custom Handlers
	Figure 31. Asking for Handler code generation
	Figure 32. Keil® Access to Show Caller Code in Contextual menu

	6.3 Trapping div/0 exception
	6.3.1 Cortex®-M0/M0+ case
	6.3.2 Cortex®-M3/4/7 case
	Figure 33. Cortex®-M3 SCB_CCR Description
	Figure 34. Cortex-M3 SCB_CFSR Description
	Figure 35. IAR™ exception handling
	Figure 36. Keil® System Control and Configure
	Figure 37. Keil® Fault Reports
	Figure 38. SW4STM32 SCB register access

	7 Printf debugging
	7.1 STM32 Virtual-COM port driver
	Figure 39. Virtual-COM port on Windows® PC

	7.2 Printf via UART
	Figure 40. USART Pinout configuration with STM32CubeMX
	Figure 41. USART2 setting with STM32CubeMX
	Table 5. STM32 USART vs. PC terminal WordLength example

	7.3 Printf via SWO/SWV
	Figure 42. SWO Pin configuration with STM32CubeMX
	Figure 43. Semihosting/SWO configuration with IAR™
	Figure 44. IAR™ SWO Clock setting
	Figure 45. SWO Configuration with Keil®
	Figure 46. Access to SWV in Keil®
	Figure 47. SWV in ST-LINK utility

	7.4 Semihosting
	7.4.1 IAR™ EWARM
	Figure 48. Semihosting configuration in IAR™

	7.4.2 Keil® MDK-ARM µVISION
	7.4.3 SW4STM32
	Figure 49. Semihosting procedure in SW4STM32
	Figure 50. Getting SW4STM32 reference version (1/2)
	Figure 51. Getting SW4STM32 reference version (2/2)

	8 Debug through hardware exploration
	8.1 Easy pinout probing with STMicroelectronics hardware kits
	8.2 Microcontroller clock output (MCO)
	8.2.1 Configuration with STM32CubeMX
	Figure 52. MCO pin selection in STM32CubeMX
	Figure 53. MCO alternate pin highlight exemple with L073
	Figure 54. MCO Multiplexer in STM32CubeMX Clock Configuration Pane

	8.2.2 HAL_RCC_MCOConfig
	8.2.3 STM32 Series differences
	Figure 55. STM32F4/F7 dual MCO capabilities

	9 From debug to release
	10 Troubleshooting
	Table 6. Troubleshooting

	Appendix A Managing DBGMCU registers
	A.1 By the ST-LINK utility
	Figure 56. ST-LINK utility Enable Low-Power debug option

	A.2 By software
	Figure 57. DBMCU Register LL Library Functions
	Figure 58. DBGMCU_CR HAL Library Functions

	A.3 By debugger
	Figure 59. Access to DBGMCU register with IAR™
	Figure 60. EWARM C-SPY® Macro script setting
	Figure 61. Accessing DBGMCU register in Keil® MDK-ARM µVision (1/2)
	Figure 62. Accessing DBGMCU register in Keil® MDK-ARM µVision (2/2))
	Figure 63. Keil® Initialization script setting
	Figure 64. Access to Generator Options in SW4STM32 V2.0.0
	Figure 65. Generator Options debug MCU in SW4STM32 V2.0.0
	Figure 66. Runtime R/W access to DBGMCU register with SW4STM32

	Appendix B Use Nucleo “cutted” ST-LINK as stand-alone VCP
	Figure 67. ST-LINK cuttable part of Nucleo
	Figure 68. Using ST-LINK stand-alone part of Nucleo-L476RG as VCP
	Figure 69. Virtual-COM port on PC side

	Appendix C Managing various targets on the same PC
	Figure 70. ST-LINK utility target selection pick list
	Figure 71. Getting target ST-LINK S/N from the console
	Figure 72. IAR™ Debug Probe Selection pop-up window
	Figure 73. IAR™ Debug Probe Selection with nickname
	Figure 74. Probe selection prompt setting on IAR™
	Figure 75. Keil® ST-LINK selection
	Figure 76. Forcing specific ST-LINK S/N with SW4STM32

	Appendix D Cortex®-M debug capabilities reminder
	Table 7. STM32 Series vs. debug capabilties

	Revision history
	Table 8. Document revision history

